Flask-Admin documentation
Release 1.4.0

Serge S. Koval

January 02, 2016

Contents

1 Introduction To Flask-Admin 3
1.1 Getting Started e e e 3
1.2 Authorization & Permissions e 4
1.3 Customizing Built-in Views L e 5
1.4 Adding Your Own VIewso e e 7
1.5 Working With the Built-in Templates 8
2 Advanced Functionality 11
2.1 Enabling CSRF Protection e e e e 11
2.2 Localization With Flask-Babelex 11
2.3 Managing Files & Folders e 12
24 Adding ARedis Console L e e e e e e e e 12
2.5 Replacing Individual Form Fields 13
2.6 Managing Geographical Models L 14
2.7 Customising Builtin Forms Via RenderingRules 15
2.8 Using Different Database Backends 16
2.9 Migrating From Django L e e e e e e e 18
2.10 Overriding the Form Scaffolding 19
2.11 Customizing Batch Actions e 19
3 Adding A Model Backend 21
3.1 Extending BaseModelView L e e e 21
3.2 Implementing filters e 23
4 API 25
4.1 flask_admin.base e e e 25
42 flask_admin.helpers o v i i v i it e e e e e e e e e e e e e e 28
43 flask_admin.model i e e e 28
44 flask_admin.fOoTmM . . . v v v v v v e e e e e e e e e e 41
4.5 flask_admin.form.ruUles v v v it i e e e e e e e e 42
4.6 flask_admin.form.fields o v i i i it e e e e e e e 43
47 flask_admin.form.upload i i i i e e e e e e e e 43
4.8 flask_admin.tools i e e e e e e 46
4.9 flask_admin.actions v v v v i i e e e e e 46
4.10 flask_admin.contrib.sgla i i i i i e e e e e e e 47
411 flask_admin.contrib.mongoengine i v it ittt 57
412 flask_admin.contrib.mongoengine.fields v i ... 66
4.13 flask_admin.contrib.peewee i i i vt it e e e e e e 66

414 flask_admin.contrib.pymongo i i i it i e e e e e e e e e
4.15 flask_admin.contrib.fileadmin i v v i i v it i e i e e e
416 flask_admin.model.template i i i i it e e e e e

Changelog

S0 140 o e e
52 1.3.0 e e e
53 12,0 L e
540 110 o e e

6 Support

7 Indices And Tables

Python Module Index

83
83
83
84
84

85

87

89

Flask-Admin documentation, Release 1.4.0

Why Flask? As a micro-framework, Flask lets you build web services with very little overhead. It offers freedom for
you, the designer, to implement your project in a way that suits your particular application.

Why Flask-Admin? In a world of micro-services and APIs, Flask-Admin solves the boring problem of building an
admin interface on top of an existing data model. With little effort, it lets you manage your web service’s data through
a user-friendly interface.

How does it work? The basic concept behind Flask-Admin, is that it lets you build complicated interfaces by grouping
individual views together in classes: Each web page you see on the frontend, represents a method on a class that has
explicitly been added to the interface.

These view classes are especially helpful when they are tied to particular database models, because they let you group
together all of the usual Create, Read, Update, Delete (CRUD) view logic into a single, self-contained class for each
of your models.

What does it look like? At http://examples.flask-admin.org/ you can see some examples of Flask-Admin in action, or
browse through the examples/ directory in the GitHub repository.

Contents 1

http://flask.pocoo.org/
http://examples.flask-admin.org/
https://github.com/flask-admin/flask-admin

Flask-Admin documentation, Release 1.4.0

2 Contents

CHAPTER 1

Introduction To Flask-Admin

1.1 Getting Started

1.1.1 Initialization

The first step is to initialize an empty admin interface for your Flask app:

from flask import Flask
from flask_admin import Admin

app = Flask(__name__)

admin = Admin (app, name='microblog', template_mode='bootstrap3"')
Add administrative views here

app.run()

Here, both the name and template_mode parameters are optional. Alternatively, you could use the init_app ()
method.

If you start this application and navigate to http://localhost:5000/admin/, you should see an empty page with a naviga-
tion bar on top.

1.1.2 Adding Model Views

Model views allow you to add a dedicated set of admin pages for managing any model in your database. Do this by
creating instances of the ModelView class, which you can import from one of Flask-Admin’s built-in ORM backends.
An example is the SQLAlchemy backend, which you can use as follows:

from flask_admin.contrib.sgla import ModelView
Flask and Flask—-SQLAlchemy initialization here
admin = Admin (app, name='microblog', template_mode='bootstrap3"')

admin.add_view (ModelView (User, db.session))
admin.add_view (ModelView (Post, db.session))

Straight out of the box, this gives you a set of fully featured CRUD views for your model:

* A list view, with support for searching, sorting, filtering, and deleting records.

http://localhost:5000/admin/

Flask-Admin documentation, Release 1.4.0

* A create view for adding new records.
* An edit view for updating existing records.
* An optional, read-only details view.

There are many options available for customizing the display and functionality of these built-in views. For more details
on that, see Customizing Built-in Views. For more details on the other ORM backends that are available, see Using
Different Database Backends.

1.1.3 Adding Content to the Index Page

The first thing you’ll notice when you visit http://localhost:5000/admin/ is that it’s just an empty page with a navigation
menu. To add some content to this page, save the following text as admin/index.html in your project’s templates
directory:

o

% extends 'admin/master.html' %}

{% block body %}
<p>Hello world</p>
% endblock %}

This will override the default index template, but still give you the built-in navigation menu. So, now you can add any
content to the index page, while maintaining a consistent user experience.

1.2 Authorization & Permissions

When setting up an admin interface for your application, one of the first problems you’ll want to solve is how to keep
unwanted users out. With Flask-Admin there are a few different ways of approaching this.

1.2.1 HTTP Basic Auth

The simplest form of authentication is HTTP Basic Auth. It doesn’t interfere with your database models, and it doesn’t
require you to write any new view logic or template code. So it’s great for when you’re deploying something that’s
still under development, before you want the whole world to see it.

Have a look at Flask-BasicAuth to see just how easy it is to put your whole application behind HTTP Basic Auth.

Unfortunately, there is no easy way of applying HTTP Basic Auth just to your admin interface.

1.2.2 Rolling Your Own

For a more flexible solution, Flask-Admin lets you define access control rules on each of your admin view classes
by simply overriding the is_accessible method. How you implement the logic is up to you, but if you were to use a
low-level library like Flask-Login, then restricting access could be as simple as:

class MicroBlogModelView (sgla.ModelView) :

def is_accessible (self) :
return login.current_user.is_authenticated()

def inaccessible_callback (self, name, xxkwargs):

4 Chapter 1. Introduction To Flask-Admin

http://localhost:5000/admin/
http://flask-basicauth.readthedocs.org/
https://flask-login.readthedocs.org/

Flask-Admin documentation, Release 1.4.0

redirect to login page 1if user doesn't have access
return redirect (url_for('login', next=request.url))

In the navigation menu, components that are not accessible to a particular user will not be displayed for that
user. For an example of using Flask-Login with Flask-Admin, have a look at https://github.com/flask-admin/Flask-
Admin/tree/master/examples/auth-flask-login.

The main drawback is that you still need to implement all of the relevant login, registration, and account management
views yourself.

1.2.3 Using Flask-Security

If you want a more polished solution, you could use Flask-Security, which is a higher-level library. It comes with lots
of built-in views for doing common things like user registration, login, email address confirmation, password resets,
etc.

The only complicated bit is making the built-in Flask-Security views integrate smoothly with the Flask-Admin tem-
plates to create a consistent user experience. To do this, you will need to override the built-in Flask-Security templates
and have them extend the Flask-Admin base template by adding the following to the top of each file:

{% extends 'admin/master.html' %}

Now, you’ll need to manually pass in some context variables for the Flask-Admin templates to render correctly when
they’re being called from the Flask-Security views. Defining a security_context_processor function will take care of
this for you:

def security_context_processor () :
return dict (
admin_base_template=admin.base_template,
admin_view=admin.index_view,
h=admin_helpers,

)

For a working example of using Flask-Security with Flask-Admin, have a look at https://github.com/flask-
admin/Flask-Admin/tree/master/examples/auth.

The example only uses the built-in register and login views, but you could follow the same approach for including the
other views, like forgot_password, send_confirmation, etc.

1.3 Customizing Built-in Views

The built-in ModelView class is great for getting started quickly. But, you’ll want to configure its functionality to suit
your particular models. This is done by setting values for the configuration attributes that are made available in the
ModelView class.

To specify some global configuration parameters, you can subclass ModelView and use that subclass when adding your
models to the interface:

from flask_admin.contrib.sgla import ModelView
Flask and Flask-SQLAlchemy initialization here

class MicroBlogModelView (ModelView) :
can_delete = False # disable model deletion

1.3. Customizing Built-in Views 5

https://github.com/flask-admin/Flask-Admin/tree/master/examples/auth-flask-login
https://github.com/flask-admin/Flask-Admin/tree/master/examples/auth-flask-login
https://pythonhosted.org/Flask-Security/
https://github.com/flask-admin/Flask-Admin/tree/master/examples/auth
https://github.com/flask-admin/Flask-Admin/tree/master/examples/auth

Flask-Admin documentation, Release 1.4.0

page_size = 50 # the number of entries to display on the list view

admin.add_view (MicroBlogModelView (User, db.session))
admin.add_view (MicroBlogModelView (Post, db.session))

Or, in much the same way, you can specify options for a single model at a time:

class UserView (ModelView) :
can_delete = False # disable model deletion

class PostView (ModelView) :
page_size = 50 # the number of entries to display on the list view

admin.add_view (UserView (User, db.session))
admin.add_view (PostView (Post, db.session))

1.3.1 ModelView Configuration Attributes

For a complete list of the attributes that are defined, have a look at the API documentation for BaseModelView ().
Here are some of the most commonly used attributes:

To disable some of the CRUD operations, set any of these boolean parameters:

can_create = False
can_edit = False
can_delete = False

If your model has too much data to display in the list view, you can add a read-only details view by setting:

’can_view_details = True

Removing columns from the list view is easy, just pass a list of column names for the column_excludes_list parameter:

‘column_exclude_list = ['password', 1]

To make columns searchable, or to use them for filtering, specify a list of column names:

column_searchable_list = ['name', 'email']
column_filters = ['country']

For a faster editing experience, enable inline editing in the list view:

column_editable_list = ['name', 'last_name']

Or, have the add & edit forms display inside a modal window on the list page, instead of the dedicated create & edit
pages:

create_modal = True
edit_modal = True

You can restrict the possible values for a text-field by specifying a list of select choices:

form_choices = {
'title': [
('MR', 'Mr'),
'MRS', 'Mrs'),
'™MS', 'Ms'),
'DR', 'Dr'),

(
(
(
('PROF', 'Prof.')

6 Chapter 1. Introduction To Flask-Admin

Flask-Admin documentation, Release 1.4.0

}

To remove fields from the create and edit forms:

form_excluded_columns = ['last_name', 'email']

To specify WTForms field arguments:

form_args = {
'name': {
'label': 'First Name',
'validators': [required()]

}

Or, to specify arguments to the WTForms widgets used to render those fields:

form_widget_args = {
'description': {
'rows': 10,
'style': 'color: black'

}

When your forms contain foreign keys, have those related models loaded via ajax, using:

form_ajax_refs = {
'user': {
'fields': ['first_name', 'last_name', 'email'],
'page_size': 10

}

To manage related models inline:

inline_models = ['post',]

These inline forms can be customized. Have a look at the API documentation for 1nline models ().

To enable csv export of the model view:

can_export = True

This will add a button to the model view that exports records, truncating at export_max_rows.

1.4 Adding Your Own Views

For situations where your requirements are really specific and you struggle to meet them with the built-in Mode1lView
class, Flask-Admin makes it easy for you to take full control and add your own views to the interface.

1.4.1 Standalone Views

A set of standalone views (not tied to any particular model) can be added by extending the BaseView class and
defining your own view methods. For example, to add a page that displays some analytics data from a 3rd-party API:

1.4. Adding Your Own Views 7

Flask-Admin documentation, Release 1.4.0

from flask admin import BaseView, expose

class AnalyticsView (BaseView) :
@Qexpose ('/")
def index(self):
return self.render('analytics_index.html")

admin.add_view (AnalyticsView (name='Analytics', endpoint='analytics'))

This will add a link to the navbar for your view. Notice that it is served at ‘/°, the root URL. This is a restriction on
standalone views: at the very minimum, each view class needs at least one method to serve a view at its root.

The analytics_index.html template for the example above, could look something like:

{% extends 'admin/master.html' %}
{% block body %}

<p>Here I'm going to display some data.</p>
{% endblock %}

By extending the admin/master.html template, you can maintain a consistent user experience, even while having tight
control over your page’s content.

1.4.2 Overriding the Built-in Views

There may be some scenarios where you want most of the built-in ModelView functionality, but you want to replace
one of the default create, edit, or list views. For this you could override only the view in question, and all the links to
it will still function as you would expect:

from flask_admin.contrib.sgla import ModelView
Flask and Flask-SQLAlchemy initialization here

class UserView (ModelView) :
@expose ('/new/', methods=('GET', 'POST'))
def create_view(self):

Custom create view.
nmnwn

return self.render ('create_user.html')

1.5 Working With the Built-in Templates

Flask-Admin uses the Jinja2 templating engine.

1.5.1 Extending the Built-in Templates
Rather than overriding the built-in templates completely, it’s best to extend them. This will make it simpler for you to
upgrade to new Flask-Admin versions in future.

Internally, the Flask-Admin templates are derived from the admin/master.html template. The three most interesting
templates for you to extend are probably:

8 Chapter 1. Introduction To Flask-Admin

http://jinja.pocoo.org/docs/

Flask-Admin documentation, Release 1.4.0

e admin/model/list.html
e admin/model/create.html
e admin/model/edit.html

To extend the default edit template with your own functionality, create a template in templates/microblog_edit.html to
look something like:

{% extends 'admin/model/edit.html' %}

{% block body %}
<hl>MicroBlog Edit View</hl>
{{ super() }}

{% endblock %}

Now, to make your view classes use this template, set the appropriate class property:

class MicroBlogModelView (ModelView) :
edit_template = 'microblog_edit.html'
create_template = 'microblog create.html’

list_template 'microblog_list.html

If you want to use your own base template, then pass the name of the template to the admin constructor during
initialization:

‘admin = Admin (app, base_template='microblog_master.html")

1.5.2 Overriding the Built-in Templates

To take full control over the style and layout of the admin interface, you can override all of the built-in templates. Just
keep in mind that the templates will change slightly from one version of Flask-Admin to the next, so once you start
overriding them, you need to take care when upgrading your package version.

To override any of the built-in templates, simply copy them from the Flask-Admin source into your project’s tem-
plates/admin/ directory. As long as the filenames stay the same, the templates in your project directory should auto-
matically take precedence over the built-in ones.

Available Template Blocks

Flask-Admin defines one base template at admin/master.html that all other admin templates are derived from. This
template is a proxy which points to admin/base.html, which defines the following blocks:

Block Name Description

head_meta Page metadata in the header

title Page title

head_css Various CSS includes in the header

head Empty block in HTML head, in case you want to put something there
page_body Page layout

brand Logo in the menu bar

main_menu Main menu

menu_links Links menu

access_control | Section to the right of the menu (can be used to add login/logout buttons)
messages Alerts and various messages

body Content (that’s where your view will be displayed)

tail Empty area below content

1.5. Working With the Built-in Templates 9

Flask-Admin documentation, Release 1.4.0

In addition to all of the blocks that are inherited from admin/master.html, the admin/model/list.html template also
contains the following blocks:

Block Name Description

model_menu_bar Menu bar

model_list_table Table container

list_header Table header row

list_row_actions_header | Actions header

list_row Single row

list_row_actions Row action cell with edit/remove/etc buttons
empty_list_message Message that will be displayed if there are no models found

Have a look at the layout example at https://github.com/flask-admin/flask-admin/tree/master/examples/layout to see
how you can take full stylistic control over the admin interface.

1.5.3 Environment Variables

While working in any of the templates that extend admin/master.html, you have access to a small number of environ-
ment variables:

Variable Name Description

admin_view Current administrative view
admin_base_template | Base template name

_gettext Babel gettext

_ngettext Babel ngettext

h Helpers from he lpers module

1.5.4 Generating URLs

To generate the URL for a specific view, use url_for with a dot prefix:

from flask import url_for

class MyView (BaseView) :
@expose ('/"')
def index(self):
Get URL for the test view method
user_list_url = url_for ('user.index_view'")
return self.render('index.html', user_list_url=user_list_url)

A specific record can also be referenced with:

Edit View for record #1 (redirect back to index_view)
url_for ('user.edit_view', id=1, url=url_for('user.index_view'))

When referencing ModelView instances, use the lowercase name of the model as the prefix when calling url_for.
Other views can be referenced by specifying a unique endpoint for each, and using that as the prefix. So, you could
use:

’url_for(’analytics.index')

If your view endpoint was defined like:

’admin.add_view(CustomView(name:'Analytics', endpoint="analytics"))

10 Chapter 1. Introduction To Flask-Admin

https://github.com/flask-admin/flask-admin/tree/master/examples/layout

CHAPTER 2

Advanced Functionality

2.1 Enabling CSRF Protection

To add CSRF protection to the forms that are generated by ModelView instances, use the SecureForm class in your
ModelView subclass by specifying the form_base_class parameter:

from flask_admin.form import SecureForm
from flask_ admin.contrib.sgla import ModelView

class CarAdmin (ModelView) :
form_base_class = SecureForm

SecureForm requires WTForms 2 or greater. It uses the WTForms SessionCSRF class to generate and validate the
tokens for you when the forms are submitted.

2.2 Localization With Flask-Babelex

Flask-Admin comes with translations for several languages. Enabling localization is simple:

1. Install Flask-BabelEx to do the heavy lifting. It’s a fork of the Flask-Babel package:

pip install flask-babelex

2. Initialize Flask-BabelEx by creating instance of Babel class:

from flask import app
from flask_babelex import Babel

app = Flask(__name__)
babel = Babel (app)

3. Create a locale selector function:

@babel.localeselector
def get_locale():
if request.args.get ('lang'):
session['lang'] = request.args.get ('lang')
return session.get ('lang', 'en')

11

http://github.com/mrjoes/flask-babelex/
http://github.com/mitshuhiko/flask-babel/

Flask-Admin documentation, Release 1.4.0

Now, you could try a French version of the application at: http://localhost:5000/admin/?lang=fr.

Go ahead and add your own logic to the locale selector function. The application can store locale in a user profile,
cookie, session, etc. It can also use the Accept-Language header to make the selection automatically.

If the built-in translations are not enough, look at the Flask-BabelEx documentation to see how you can add your own.

2.3 Managing Files & Folders

To manage static files instead of database records, Flask-Admin comes with the FileAdmin plug-in. It gives you the
ability to upload, delete, rename, etc. You can use it by adding a FileAdmin view to your app:

from flask admin.contrib.fileadmin import FileAdmin

import os.path as op

Flask setup here

admin = Admin (app, name='microblog', template_mode='bootstrap3")

path = op.join(op.dirname(__file_), 'static')
admin.add_view (FileAdmin (path, '/static/', name='Static Files'))

FileAdmin also has out-of-the-box support for managing files located on a Amazon Simple Storage Service bucket.
To add it to your app:

from flask_admin import Admin
from flask_admin.contrib.fileadmin.s3 import S3FileAdmin

admin = Admin ()

admin.add_view (S3FileAdmin('files_bucket', 'us-east-1', 'key_id', 'secret_key"')

You can disable uploads, disable file deletion, restrict file uploads to certain types, etc. Check
flask_admin.contrib.fileadmin inthe API documentation for more details.

2.3.1 Adding new file backends

You can also implement your own storage backend by creating a class that implements the same methods defined in
the LocalFileStorage class. Check flask_admin.contrib.fileadmin in the API documentation for details
on the methods.

2.4 Adding A Redis Console

Another plug-in that’s available is the Redis Console. If you have a Redis instance running on the same machine as
your app, you can:

12 Chapter 2. Advanced Functionality

http://localhost:5000/admin/?lang=fr
https://pythonhosted.org/Flask-BabelEx/

Flask-Admin documentation, Release 1.4.0

from redis import Redis
from flask_admin.contrib import rediscli

Flask setup here
admin = Admin (app, name='microblog', template_mode='bootstrap3")

path = op.join(op.dirname(__file_), 'static')
admin.add_view (rediscli.RedisCli (Redis()))

2.5 Replacing Individual Form Fields

The form_overrides attribute allows you to replace individual fields within a form. A common use-case for this would
be to add a What-You-See-Is-What-You-Get (WYSIWIG) editor, or to handle file / image uploads that need to be tied
to a field in your model.

2.5.1 WYSIWIG Text Fields

To handle complicated text content, you can use CKEditor by subclassing some of the built-in WTForms classes as
follows:

from wtforms import TextAreaField
from wtforms.widgets import TextArea

class CKTextAreaWidget (TextArea) :
def _ _call (self, field, =*xkwargs):
if kwargs.get('class'):
kwargs['class'] += ' ckeditor'
else:
kwargs.setdefault ('class', 'ckeditor')
return super (CKTextAreaWidget, self).__call__ (field, =*=*kwargs)

class CKTextAreaField (TextAreaField) :
widget = CKTextAreaWidget ()

class MessageAdmin (ModelView) :
form_overrides = {
'body': CKTextAreaField
}
create_template = 'ckeditor.html'
edit_template = 'ckeditor.html'

For this to work, you would also need to create a template that extends the default functionality by including the
necessary CKEditor javascript on the create and edit pages. Save this in templates/ckeditor. html:

{% extends 'admin/model/edit.html' %}

{% block tail %}

{{ super() }}

<script src="//cdn.ckeditor.com/4.5.1/standard/ckeditor.js"></script>
{% endblock %}

2.5. Replacing Individual Form Fields 13

http://ckeditor.com/

Flask-Admin documentation, Release 1.4.0

2.5.2 File & Image Fields

Flask-Admin comes with a built-in F'i leUploadField () and TmageUploadField (). To make use of them,
you’ll need to specify an upload directory and add them to the forms in question. Image handling also requires you to
have Pillow installed if you need to do any processing on the image files.

Have a look at the example at https://github.com/flask-admin/Flask-Admin/tree/master/examples/forms.

If you are using the MongoEngine backend, Flask-Admin supports GridFS-backed image and file uploads through
WTForms fields. Documentation can be found at f1ask_admin.contrib.mongoengine. fields.

If you just want to manage static files in a directory, without tying them to a database model, then use the File-Admin
plug-in.

2.6 Managing Geographical Models

If you want to store spatial information in a GIS database, Flask-Admin has you covered. The GeoAlchemy backend
extends the SQLAlchemy backend (just as GeoAlchemy extends SQLAlchemy) to give you a pretty and functional
map-based editor for your admin pages.

Some notable features include:
* Maps are displayed using the amazing Leaflet Javascript library, with map data from Mapbox.
¢ Geographic information, including points, lines and polygons, can be edited interactively using Leaflet. Draw.
* Graceful fallback: GeoJSON data can be edited in a <textarea>, if the user has turned off Javascript.
* Works with a Geometry SQL field that is integrated with Shapely objects.

To get started, define some fields on your model using GeoAlchemy’s Geometry field. Next, add model views to your
interface using the ModelView class from the GeoAlchemy backend, rather than the usual SQLAlchemy backend:

from geoalchemy2 import Geometry
from flask_ _admin.contrib.geoa import ModelView

.. flask initialization
db = SQLAlchemy (app)

class Location (db.Model) :
id = db.Column (db.Integer, primary_key=True)
name = db.Column (db.String(64), unique=True)
point = db.Column (Geometry ("POINT"))

Some of the Geometry field types that are available include: “POINT”, “MULTIPOINT”, “POLYGON”, “MULTI-
POLYGON”, “LINESTRING” and “MULTILINESTRING”.

Have a look at https://github.com/flask-admin/flask-admin/tree/master/examples/geo_alchemy to get started.

2.6.1 Loading Tiles From Mapbox

To have map data display correctly, you’ll have to sign up for an account at https://www.mapbox.com/ and include
some credentials in your application’s config:

app = Flask(__name__)
app.config['MAPBOX_MAP_ID'] = "example.abcl23"
app.config['MAPBOX_ ACCESS_TOKEN'] = "pk.def456"

14 Chapter 2. Advanced Functionality

https://pypi.python.org/pypi/Pillow/2.8.2
https://github.com/flask-admin/Flask-Admin/tree/master/examples/forms
http://geoalchemy-2.readthedocs.org/
http://leafletjs.com/
https://www.mapbox.com/
https://github.com/Leaflet/Leaflet.draw
http://geojson.org/
http://geoalchemy-2.readthedocs.org/en/latest/types.html#geoalchemy2.types.Geometry
http://toblerity.org/shapely/
https://github.com/flask-admin/flask-admin/tree/master/examples/geo_alchemy
https://www.mapbox.com/

Flask-Admin documentation, Release 1.4.0

Leaflet supports loading map tiles from any arbitrary map tile provider, but at the moment, Flask-Admin only supports
Mapbox. If you want to use other providers, make a pull request!

2.6.2 Limitations

There’s currently no way to sort, filter, or search on geometric fields in the admin. It’s not clear that there’s a good
way to do so. If you have any ideas or suggestions, make a pull request!

2.7 Customising Builtin Forms Via Rendering Rules

Before version 1.0.7, all model backends were rendering the create and edit forms using a special Jinja2 macro, which
was looping over the fields of a WTForms form object and displaying them one by one. This works well, but it is
difficult to customize.

Starting from version 1.0.7, Flask-Admin supports form rendering rules, to give you fine grained control of how the
forms for your modules should be displayed.

The basic idea is pretty simple: the customizable rendering rules replace a static macro, so you can tell Flask-Admin
how each form should be rendered. As an extension, however, the rendering rules also let you do a bit more: You can
use them to output HTML, call Jinja2 macros, render fields, and so on.

Essentially, form rendering rules separate the form rendering from the form definition. For example, it no longer
matters in which sequence your form fields are defined.

To start using the form rendering rules, put a list of form field names into the form_create_rules property one of your
admin views:

class RuleView(sgla.ModelView) :
form_create_rules = ('email', 'first_name', 'last_name')

In this example, only three fields will be rendered and email field will be above other two fields.

Whenever Flask-Admin sees a string value in form_create_rules, it automatically assumes that it is a form field refer-
ence and creates a flask admin.form.rules.Field class instance for that field.

Let’s say we want to display some text between the email and first_name fields. This can be accomplished by using
the flask _admin.form.rules. Text class:

from flask_admin.form import rules

class RuleView (sgla.ModelView) :
form_create_rules = ('email', rules.Text ('Foobar'), 'first_name', 'last_name')

2.7.1 Built-in Rules

Flask-Admin comes with few built-in rules that can be found in the f1ask _admin. form. rules module:

2.7. Customising Builtin Forms Via Rendering Rules 15

Flask-Admin documentation, Release 1.4.0

Form Rendering Rule Description
flask_admin.form.rules.BaseRule All rules derive from this class
flask_admin.form.rules.NestedRule | Allows rule nesting, useful for HTML containers
flask _admin.form.rules.Text Simple text rendering rule
flask_admin.form.rules.HTML Same as Text rule, but does not escape the text
flask_admin.form.rules.Macro Calls macro from current Jinja2 context
flask_admin.form.rules.Container Wraps child rules into container rendered by macro
flask _admin.form.rules.Field Renders single form field
flask_admin.form.rules.Header Renders form header

flask _admin.form.rules.FieldSet Renders form header and child rules

2.8 Using Different Database Backends

Other than SQLAIchemy... There are five different backends for you to choose from, depending on which database
you would like to use for your application. If, however, you need to implement your own database backend, have a
look at Adding A Model Backend.

If you don’t know where to start, but you’re familiar with relational databases, then you should probably look at
using SOLAlchemy. 1t is a full-featured toolkit, with support for SQLite, PostgreSQL, MySQL, Oracle and MS-SQL
amongst others. It really comes into its own once you have lots of data, and a fair amount of relations between your
data models. If you want to track spatial data like latitude/longitude points, you should look into GeoAlchemy, as
well.

2.8.1 SQLAIchemy

Notable features:
* SQLAIchemy 0.6+ support
 Paging, sorting, filters
* Proper model relationship handling
* Inline editing of related models
Multiple Primary Keys

Flask-Admin has limited support for models with multiple primary keys. It only covers specific case when all but one
primary keys are foreign keys to another model. For example, model inheritance following this convention.

Let’s Model a car with its tyres:

class Car (db.Model) :
_ _tablename_ = 'cars'
id = db.Column (db.Integer, primary_key=True, autoincrement=True)
desc = db.Column (db.String (50))

def _ unicode_ (self):
return self.desc

class Tyre (db.Model) :
__tablename___ = 'tyres'
car_id = db.Column (db.Integer, db.ForeignKey ('cars.id'), primary_key=True)
tyre_id = db.Column(db.Integer, primary_key=True)

16 Chapter 2. Advanced Functionality

http://geoalchemy-2.readthedocs.org/

Flask-Admin documentation, Release 1.4.0

car = db.relationship('Car', backref='tyres')
desc = db.Column (db.String (50))

A specific tyre is identified by using the two primary key columns of the Tyre class, of which the car_id key is
itself a foreign key to the class Car.

To be able to CRUD the Tyre class, you need to enumerate columns when defining the AdminView:

class TyreAdmin (sgla.ModelView) :
form_columns = ['car', 'tyre_id', 'desc']

The form_columns needs to be explicit, as per default only one primary key is displayed.

When having multiple primary keys, no validation for uniqueness prior to saving of the object will be done. Saving
a model that violates a unique-constraint leads to an Sqlalchemy-Integrity-Error. In this case, Flask-Admin dis-
plays a proper error message and you can change the data in the form. When the application has been started with
debug=True the werkzeug debugger will catch the exception and will display the stacktrace.

2.8.2 MongoEngine
If you’re looking for something simpler than SQLAlchemy, and your data models are reasonably self-contained, then
MongoDB, a popular NoSQL database, could be a better option.

MongoEngine is a python wrapper for MongoDB. For an example of using MongoEngine with Flask-Admin, see
https://github.com/flask-admin/flask-admin/tree/master/examples/mongoengine.

Features:
* MongoEngine 0.7+ support
* Paging, sorting, filters, etc
* Supports complex document structure (lists, subdocuments and so on)
* GridFS support for file and image uploads

In order to use MongoEngine integration, install the Flask-MongoEngine package. Flask-Admin uses form scaffolding
from it.

Known issues:
¢ Search functionality can’t split query into multiple terms due to MongoEngine query language limitations

For more, check the mongoengine API documentation.

2.8.3 Peewee

Features:

* Peewee 2.x+ support;

 Paging, sorting, filters, etc;

* Inline editing of related models;
In order to use peewee integration, you need to install two additional Python packages: peewee and wtf-peewee.
Known issues:

e Many-to-Many model relations are not supported: there’s no built-in way to express M2M relation in Peewee

2.8. Using Different Database Backends 17

https://www.mongodb.org/
http://mongoengine.org/
https://github.com/flask-admin/flask-admin/tree/master/examples/mongoengine
https://flask-mongoengine.readthedocs.org
https://peewee.readthedocs.org/
https://github.com/coleifer/wtf-peewee/

Flask-Admin documentation, Release 1.4.0

For more, check the peewee API documentation. Or look at the Peewee example at https://github.com/flask-
admin/flask-admin/tree/master/examples/peewee.

2.8.4 PyMongo

The bare minimum you have to provide for Flask-Admin to work with PyMongo:
1. A list of columns by setting column_list property
2. Provide form to use by setting form property

3. When instantiating f1ask_admin.contrib.pymongo.ModelView class, youhave to provide PyMongo
collection object

This is minimal PyMongo view:

class UserForm(Form) :
name = TextField('Name')
email = TextField('Email')

class UserView (ModelView) :

column_list = ('name', 'email')
form = UserForm
if name == '__main_ ':

admin = Admin (app)

'db' is PyMongo database object
admin.add_view (UserView (db['users']))

On top of that you can add sortable columns, filters, text search, etc.

For more, check the pymongoe API documentation. Or look at the Peewee example at https://github.com/flask-
admin/flask-admin/tree/master/examples/pymongo.

2.9 Migrating From Django

If you are used to Django and the django-admin package, you will find Flask-Admin to work slightly different from
what you would expect.

2.9.1 Design Philosophy

In general, Django and django-admin strives to make life easier by implementing sensible defaults. So a developer
will be able to get an application up in no time, but it will have to conform to most of the defaults. Of course it is
possible to customize things, but this often requires a good understanding of what’s going on behind the scenes, and it
can be rather tricky and time-consuming.

The design philosophy behind Flask is slightly different. It embraces the diversity that one tends to find in web
applications by not forcing design decisions onto the developer. Rather than making it very easy to build an application
that almost solves your whole problem, and then letting you figure out the last bit, Flask aims to make it possible for
you to build the whole application. It might take a little more effort to get started, but once you’ve got the hang of it,
the sky is the limit... Even when your application is a little different from most other applications out there on the web.

18 Chapter 2. Advanced Functionality

https://github.com/flask-admin/flask-admin/tree/master/examples/peewee
https://github.com/flask-admin/flask-admin/tree/master/examples/peewee
https://github.com/flask-admin/flask-admin/tree/master/examples/pymongo
https://github.com/flask-admin/flask-admin/tree/master/examples/pymongo
https://www.djangoproject.com/

Flask-Admin documentation, Release 1.4.0

Flask-Admin follows this same design philosophy. So even though it provides you with several tools for getting up
& running quickly, it will be up to you, as a developer, to tell Flask-Admin what should be displayed and how. Even
though it is easy to get started with a simple CRUD interface for each model in your application, Flask-Admin doesn’t
fix you to this approach, and you are free to define other ways of interacting with some, or all, of your models.

Due to Flask-Admin supporting more than one ORM (SQLAIchemy, MongoEngine, Peewee, raw pymongo), the
developer is even free to mix different model types into one application by instantiating appropriate CRUD classes.

Here is a list of some of the configuration properties that are made available by Flask-Admin and the SQLAlchemy
backend. You can also see which django-admin properties they correspond to:

Django Flask-Admin

actions actions

exclude form _excluded_columns
fields form columns

form form

formfield_overrides form _args

inlines inline_models
list_display column_list

list_filter column_filters
list_per_page page_size

search_fields column_searchable list
add_form_template create template
change_form_template | change_form_template

You might want to check BaseModelView for basic model configuration options (reused by all model backends)
and specific backend documentation, for example Mode1View. There’s much more than what is displayed in this
table.

2.10 Overriding the Form Scaffolding

If you don’t want to the use the built-in Flask-Admin form scaffolding logic, you are free to roll your own by simply
overriding scaffold_form (). For example, if you use WTForms-Alchemy, you could put your form generation
code into a scaffold_form method in your ModelView class.

For SQLAIlchemy, if the synonym_property does not return a SQLAlchemy field, then Flask-Admin won’t be able to
figure out what to do with it, so it won’t generate a form field. In this case, you would need to manually contribute
your own field:

class MyView (ModelView) :
def scaffold _form(self):
form_class = super (UserView, self).scaffold_form()
form_class.extra = TextField('Extra')
return form_class

2.11 Customizing Batch Actions

If you want to add other batch actions to the list view, besides the default delete action, then you can define a function
that implements the desired logic and wrap it with the @action decorator.

2.10. Overriding the Form Scaffolding 19

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://github.com/kvesteri/wtforms-alchemy

Flask-Admin documentation, Release 1.4.0

The action decorator takes three parameters: name, text and confirmation. While the wrapped function should accept

only one parameter - ids:

from flask_admin.actions import action

class UserView (ModelView) :

for user in query.all():
if user.approve () :
count += 1

flash(ngettext ('User was successfully approved.',
! users were successfully approved.',
count,
count=count))
except Exception as ex:
if not self.handle_view_exception (ex):

raise

flash(gettext ('Failed to approve users. ', error=str(ex)),

@action ('approve', 'Approve', 'Are you sure you want to approve selected users?')
def action_approve(self, ids):
try:
query = User.query.filter (User.id.in_ (ids))
count = 0

'error')

20

Chapter 2. Advanced Functionality

CHAPTER 3

Adding A Model Backend

Flask-Admin makes a few assumptions about the database models that it works with. If you want to implement your
own database backend, and still have Flask-Admin’s model views work as expected, then you should take note of the
following:

1. Each model must have one field which acts as a primary key to uniquely identify instances of that model.
However, there are no restriction on the data type or the field name of the primary key field.

2. Models must make their data accessible as python properties.

If that is the case, then you can implement your own database backend by extending the BaseModelView class, and
implementing the set of scaffolding methods listed below.

3.1 Extending BaseModelView

Start off by defining a new class, which derives from from BaseModelView:

class MyDbModel (BaseModelView) :
pass

This class inherits BaseModelView’s __init__ method, which accepts a model class as first argument. The
model class is stored as the attribute self.model so that other methods may access it.

Now, implement the following scaffolding methods for the new class:
1. get_pk_value ()

This method returns a primary key value from the model instance. In the SQLAlchemy
backend, it gets the primary key from the model using scaffold_pk (), caches it and
then returns the value from the model whenever requested.

For example:

class MyDbModel (BaseModelView) :
def get_pk_value(self, model):
return self.model.id

2. scaffold list_columns()

Returns a list of columns to be displayed in a list view. For example:

21

Flask-Admin documentation, Release 1.4.0

class MyDbModel (BaseModelView) :
def scaffold_list_columns (self):
columns = []

for p in dir(self.model):
attr = getattr(self.model)
if isinstance(attr, MyDbColumn) :
columns.append (p)

return columns

3. scaffold_sortable columns ()

Returns a dictionary of sortable columns. The keys in the dictionary should correspond to
the model’s field names. The values should be those variables that will be used for sorting.

For example, in the SQLAIchemy backend it is possible to sort by a foreign key field. So,
if there is a field named user, which is a foreign key for the Users table, and the Users table
also has a name field, then the key will be user and value will be Users.name.

If your backend does not support sorting, return None or an empty dictionary.
4. init_search()

Initialize search functionality. If your backend supports full-text search, do initializations
and return True. If your backend does not support full-text search, return False.

For example, SQLAIlchemy backend reads value of the self.searchable_columns and veri-
fies if all fields are of text type, if they’re local to the current model (if not, it will add a
join, etc) and caches this information for future use.

5. scaffold_form()
Generate WTForms form class from the model.

For example:

class MyDbModel (BaseModelView) :
def scaffold _form(self):
class MyForm(Form) :
pass

Do something
return MyForm

6. get_list ()
This method should return list of model instances with paging, sorting, etc applied.
For SQLAIchemy backend it looks like:

(a) If search was enabled and provided search value is not empty, generate LIKE state-
ments for each field from self.searchable_columns

(b) If filter values were passed, call apply method with values:

for flt, value in filters:
query = self._filters[flt].apply(query, value)

(c) Execute query to get total number of rows in the database (count)

22 Chapter 3. Adding A Model Backend

Flask-Admin documentation, Release 1.4.0

(d) If sort_column was passed, will do something like (with some extra FK logic which is
omitted in this example):

if sort_desc:

query = query.order_by(desc (sort_field))
else:

query = query.order_by (sort_field)

(e) Apply paging
(f) Return count, list as a tuple
7. get_one ()
Return a model instance by its primary key.
8. create_model ()
Create a new instance of the model from the Form object.
9. update_model ()
Update the model instance with data from the form.
10. delete_model ()
Delete the specified model instance from the data store.
11. is _valid filter()
Verify whether the given object is a valid filter.
12. scaffold filters()
Return a list of filter objects for one model field.
This method will be called once for each entry in the self.column_filters setting.
If your backend does not know how to generate filters for the provided field, it should return None.

For example:

class MyDbModel (BaseModelView) :
def scaffold_filters(self, name):
attr = getattr(self.model, name)

if isinstance (attr, MyDbTextField):
return [MyEqualFilter (name, name)]

3.2 Implementing filters

Each model backend should have its own set of filter implementations. It is not possible to use the filters
from SQLAlchemy models in a non-SQLAIchemy backend. This also means that different backends
might have different set of available filters.

The filter is a class derived from BaseFilter which implements at least two methods:

1. apply ()

2. operation ()

3.2. Implementing filters

23

Flask-Admin documentation, Release 1.4.0

apply method accepts two parameters: query object and a value from the client. Here you can add filtering
logic for the filter type.

Lets take SQLAlchemy model backend as an example:
All SQLAIchemy filters derive from BaseSQLAFilter class.

Each filter implements one simple filter SQL operation (like, not like, greater, etc) and accepts a column
as input parameter.

Whenever model view wants to apply a filter to a query object, it will call apply method in a filter class
with a query and value. Filter will then apply real filter operation.

For example:

class MyBaseFilter (BaseFilter):

def _ init__ (self, column, name, options=None, data_type=None) :
super (MyBaseFilter, self).__init__ (name, options, data_type)
self.column = column

class MyEqualFilter (MyBaseFilter):
def apply(self, query, value):
return query.filter(self.column == value)

def operation(self):
return gettext ('equals')

You can validate values. If value is not valid,
return ‘False', so filter will be ignored.
def validate(self, wvalue):

return True

You can "clean" values before they will be
passed to the your data access layer
def clean(self, wvalue):

return value

Feel free ask questions if you have problems adding a new model backend. Also, if you get stuck, try taking a look at
the SQLAIchemy model backend and use it as a reference.

24

Chapter 3. Adding A Model Backend

CHAPTER 4

API

41 flask admin.base

4.1.1 Base View
expose (url="/", methods=(‘GET’,))
Use this decorator to expose views in your view classes.
Parameters
* url — Relative URL for the view
* methods — Allowed HTTP methods. By default only GET is allowed.

expose_plugview (url="/")
Decorator to expose Flask’s pluggable view classes (flask.views.View or
flask.views.MethodView).

Parameters url — Relative URL for the view
New in version 1.0.4.

class BaseView (name=None, category=None, endpoint=None, url=None, static_folder=None,
static_url_path=None, menu_class_name=None, menu_icon_type=None,

menu_icon_value=None)
Base administrative view.

Derive from this class to implement your administrative interface piece. For example:

from flask_ admin import BaseView, expose
class MyView (BaseView) :
Qexpose ('/")
def index(self):
return 'Hello World!'

Icons can be added to the menu by using menu_icon_type and menu_icon_value. For example:

admin.add_view (MyView (name='My View', menu_icon_type="'glyph', menu_icon_value='glyphicon—-home'))

create_blueprint (admin)
Create Flask blueprint.

get_url (endpoint, **kwargs)
Generate URL for the endpoint. If you want to customize URL generation logic (persist some query string
argument, for example), this is right place to do it.

25

Flask-Admin documentation, Release 1.4.0

Parameters
* endpoint — Flask endpoint name
* kwargs — Arguments for url_for

inaccessible_callback (name, **kwargs)
Handle the response to inaccessible views.

By default, it throw HTTP 403 error. Override this method to customize the behaviour.

is_accessible ()
Override this method to add permission checks.

Flask-Admin does not make any assumptions about the authentication system used in your application, so

it is up to you to implement it.
By default, it will allow access for everyone.

is visible ()

Override this method if you want dynamically hide or show administrative views from Flask-Admin menu

structure
By default, item is visible in menu.
Please note that item should be both visible and accessible to be displayed in menu.

render (template, **kwargs)
Render template

Parameters
* template — Template path to render

* kwargs — Template arguments

4.1.2 Default view

class AdminIndexView (name=None, category=None, endpoint=None, url=None, tem-
plate="admin/index.html’, menu_class_name=None, menu_icon_type=None,

o ~ menu_icon_value=None) o
Default administrative interface index page when visiting the /admin/ URL.

It can be overridden by passing your own view class to the Admin constructor:

class MyHomeView (AdminIndexView) :
Qexpose('/")
def index(self):
argl = 'Hello'
return self.render ('admin/myhome.html', argl=argl)

admin = Admin (index_view=MyHomeView ())

Also, you can change the root url from /admin to / with the following:

admin = Admin (
app,
index_view=AdminIndexView (
name="'Home"',
template='"admin/myhome.html',
url="'/"

26

Chapter 4.

API

Flask-Admin documentation, Release 1.4.0

Default values for the index page are:
oIf a name is not provided, ‘Home’ will be used.
«If an endpoint is not provided, will default to admin
eDefault URL route is /admin.
*Automatically associates with static folder.

*Default template is admin/index.html

4.1.3 Admin

class Admin (app=None, name=None, url=None, subdomain=None,

tions_path=None, endpoint=None, static_url_path=None,

plate_mode=None, category_icon_classes=None)
Collection of the admin views. Also manages menu structure.

add_1link (link)
Add link to menu links collection.

Parameters link — Link to add.

add_links (*args)
Add one or more links to the menu links collection.

Examples:

index_view=None, transla-
base_template=None, tem-

admin.add_links (link1)
admin.add_links (linkl, 1link2, 1ink3, 1link4)
admin.add_links (*my_list)

Parameters args — Argument list including the links to add.
add view (view)
Add a view to the collection.
Parameters view — View to add.

add_views (*args)
Add one or more views to the collection.

Examples:

admin.add_views (viewl)
admin.add_views (viewl, view2, view3, view4)
admin.add_views (*xmy_list)

Parameters args — Argument list including the views to add.
init_app (app)
Register all views with the Flask application.
Parameters app — Flask application instance

menu ()
Return the menu hierarchy.

menu_links ()
Return menu links.

4.1.

flask admin.base

27

Flask-Admin documentation, Release 1.4.0

4.2 flask_admin.helpers

get_current_view ()
Get current administrative view.

Forms

is_required_ form_ field (field)
Check if form field has DataRequired or InputRequired validators.

Parameters £ield — WTForms field to check

is_form submitted()
Check if current method is PUT or POST

validate_form_on_submit (form)
If current method is PUT or POST, validate form and return validation status.

get_form_data()
If current method is PUT or POST, return concatenated request.form with request.files or None otherwise.

is field error (errors)
Check if wtforms field has error without checking its children.

Parameters errors — Errors list.
Jinja2 helpers

resolve_ctx (context)
Resolve current Jinja2 context and store it for general consumption.

get_render_ctx()
Get view template context.

4.3 £flask admin.model

class BaseModelView (model, name=None, category=None, endpoint=None, url=None,
static_folder=None, menu_class_name=None, menu_icon_type=None,

menu_icon_value=None)
Base model view.

This view does not make any assumptions on how models are stored or managed, but expects the following:
1.The provided model is an object
2.The model contains properties
3.Each model contains an attribute which uniquely identifies it (i.e. a primary key for a database model)
4.1t is possible to retrieve a list of sorted models with pagination applied from a data source
5.You can get one model by its identifier from the data source
Essentially, if you want to support a new data store, all you have to do is:
1.Derive from the BaseModelView class
2.Implement various data-related methods (get_list, get_one, create_model, etc)
3.Implement automatic form generation from the model representation (scaffold_form)

can_create = True
Is model creation allowed

28 Chapter 4. API

Flask-Admin documentation, Release 1.4.0

can_edit = True
Is model editing allowed

can_delete = True
Is model deletion allowed

list_template = ‘admin/model/list.html’
Default list view template

edit_template = ‘admin/model/edit.html’
Default edit template

create_template = ‘admin/model/create.html’
Default create template

column_list
Collection of the model field names for the list view. If set to None, will get them from the model.

For example:

class MyModelView (BaseModelView) :
column_list = ('name', 'last_name', 'email')

column_exclude_list
Collection of excluded list column names.

For example:

class MyModelView (BaseModelView) :
column_exclude_list = ('last_name', 'email')

column_labels
Dictionary where key is column name and value is string to display.

For example:

class MyModelView (BaseModelView) :
column_labels = dict (name='Name', last_name='Last Name')

column_descriptions = None
Dictionary where key is column name and value is description for list view column or add/edit form field.

For example:

class MyModelView (BaseModelView) :
column_descriptions = dict (
full_name='First and Last name'

column_formatters
Dictionary of list view column formatters.

For example, if you want to show price multiplied by two, you can do something like this:

class MyModelView (BaseModelView) :
column_formatters = dict (price=lambda v, ¢, m, p: m.pricex*2)

or using Jinja2 macro in template:

from flask_admin.model.template import macro

class MyModelView (BaseModelView) :
column_formatters = dict (price=macro('render_price'))

4.3.

flask_admin.model 29

Flask-Admin documentation, Release 1.4.0

in template

{% macro render_price(model, column) %}
{{ model.price » 2 }}

{% endmacro %}

The Callback function has the prototype:

def formatter (view, context, model, name):
‘view' 1s current administrative view

‘context’ 1s instance of jinjaZ.runtime.Context

"model’ is model instance
‘name’ 1is property name
pass

column_type_ formatters
Dictionary of value type formatters to be used in the list view.

By default, three types are formatted:
1.None will be displayed as an empty string
2.bool will be displayed as a checkmark if it is True

3.1ist will be joined using °, ¢

If you don’t like the default behavior and don’t want any type formatters applied, just override this property

with an empty dictionary:

class MyModelView (BaseModelView) :
column_type_formatters = dict ()

If you want to display NULL instead of an empty string, you can do something like this. Also comes with

bonus date formatter:

from datetime import date
from flask_admin.model import typefmt

def date_format (view, value):
return value.strftime (' .5m.%Y")

MY_DEFAULT_FORMATTERS = dict (typefmt.BASE_FORMATTERS)

MY_DEFAULT_FORMATTERS.update ({
type (None) : typefmt.null_formatter,
date: date_format
1)

class MyModelView (BaseModelView) :

column_type_formatters = MY_DEFAULT_FORMATTERS

Type formatters have lower priority than list column formatters.

The callback function has following prototype:

def type_formatter (view, wvalue):
‘view' 1s current administrative view
‘value' value to format
pass

column_display pk
Controls if the primary key should be displayed in the list view.

30

Chapter 4. API

Flask-Admin documentation, Release 1.4.0

column_sortable_list
Collection of the sortable columns for the list view. If set to None, will get them from the model.

For example:

class MyModelView (BaseModelView) :
column_sortable_list = ('name', 'last_name')

If you want to explicitly specify field/column to be used while sorting, you can use a tuple:

class MyModelView (BaseModelView) :
column_sortable_list = ('name', ('user', 'user.username'))

When using SQLAlchemy models, model attributes can be used instead of strings:

class MyModelView (BaseModelView) :
column_sortable_list = ('name', ('user', User.username))

column_searchable_ list
A collection of the searchable columns. It is assumed that only text-only fields are searchable, but it is up
to the model implementation to decide.

Example:

class MyModelView (BaseModelView) :
column_searchable_list = ('name', 'email')

column_default_sort = None
Default sort column if no sorting is applied.

Example:

class MyModelView (BaseModelView) :
column_default_sort = 'user'

You can use tuple to control ascending descending order. In following example, items will be sorted in
descending order:

class MyModelView (BaseModelView) :
column_default_sort = ('user', True)

column_choices = None
Map choices to columns in list view

Example:

class MyModelView (BaseModelView) :
column_choices = {
'my_column': [
('"db_value', 'display_value'),

}

column_filters = None
Collection of the column filters.

Can contain either field names or instances of BaseFilter classes.

Example:

class MyModelView (BaseModelView) :
column_filters = ('user', 'email')

4.3.

flask_admin.model 31

Flask-Admin documentation, Release 1.4.0

form = None
Form class. Override if you want to use custom form for your model. Will completely disable form
scaffolding functionality.

For example:

class MyForm(Form) :
name = StringField('Name')

class MyModelView (BaseModelView) :
form = MyForm

form base class = <class ‘flask_admin.form.BaseForm’>
Base form class. Will be used by form scaffolding function when creating model form.

Useful if you want to have custom contructor or override some fields.

Example:

class MyBaseForm(Form) :
def do_something(self):
pass

class MyModelView (BaseModelView) :
form_base_class = MyBaseForm

form columns = None
Collection of the model field names for the form. If set to None will get them from the model.

Example:

class MyModelView (BaseModelView) :
form_columns = ('name', 'email')

form_excluded_ columns
Collection of excluded form field names.

For example:

class MyModelView (BaseModelView) :
form_excluded_columns = ('last_name', 'email')

form args = None
Dictionary of form field arguments. Refer to WTForms documentation for list of possible options.

Example:

from wtforms.validators import DataRequired
class MyModelView (BaseModelView) :
form_args = dict (
name=dict (label="First Name', validators=[DataRequired()])

form overrides = None
Dictionary of form column overrides.

Example:

class MyModelView (BaseModelView) :
form_overrides = dict (name=wtf.FileField)

32 Chapter 4. API

Flask-Admin documentation, Release 1.4.0

form widget_args = None
Dictionary of form widget rendering arguments. Use this to customize how widget is rendered without
using custom template.

Example:

class MyModelView (BaseModelView) :

form_widget_args = {
'description': {
'rows': 10,
'style': 'color: black'

Changing the format of a DateTimeField will require changes to both form_widget_args and form_args.

Example:
form_args = dict (

start=dict (format='"%Y-%m- $1:%M %p') # changes how the input is parsed by strptime (1.
)
form_widget_args = dict (

start={'data-date-format': u'yyyy-mm-dd HH:ii P', 'data-show-meridian': 'Tyue'} # change
)

form extra_ fields = None
Dictionary of additional fields.

Example:

class MyModelView (BaseModelView) :
form_extra_fields = {
'password': PasswordField('Password'")

You can control order of form fields using form_columns property. For example:

class MyModelView (BaseModelView) :
form_columns = ('name', 'email', 'password', 'secret')

form _extra_fields = {
'password': PasswordField('Password")

In this case, password field will be put between email and secret fields that are autogenerated.

form_ajax_refs = None
Use AJAX for foreign key model loading.

Should contain dictionary, where key is field name and value is either a dictionary which configures AJAX
lookups or backend-specific AjaxModelLoader class instance.

For example, it can look like:

class MyModelView (BaseModelView) :

form_ajax_refs = {
'user': {
'fields': ('first_name', 'last_name', 'email'),
'page_size': 10

4.3. flask_admin.model 33

Flask-Admin documentation, Release 1.4.0

Or with SQLAIchemy backend like this:

class MyModelView (BaseModelView) :
form_ajax_refs = {
'user': QueryAjaxModelLoader ('user', db.session, User, fields=['email']

}

If you need custom loading functionality, you can implement your custom loading behavior in your Ajax-
ModelLoader class.

form create_rules = None
Customized rules for the create form. Override form_rules if present.

form edit_rules = None
Customized rules for the edit form. Override form_rules if present.

action_disallowed list
Set of disallowed action names. For example, if you want to disable mass model deletion, do something
like this:

class MyModelView(BaseModel View): action_disallowed_list = [’delete’]

page_size =20
Default page size for pagination.

action_view (*args, **kwargs)
Mass-model action view.

after_model_change (form, model, is_created)
Perform some actions after a model was created or updated and committed to the database.

Called from create_model after successful database commit.
By default does nothing.
Parameters
* form - Form used to create/update model
* model — Model that was created/updated
* is_created - True if model was created, False if model was updated

after_model_delete (model)
Perform some actions after a model was deleted and committed to the database.

Called from delete_model after successful database commit (if it has any meaning for a store backend).
By default does nothing.
Parameters model — Model that was deleted

ajax_update (*args, **kwargs)
Edits a single column of a record in list view.

can_export = False
Is model list export allowed

can_view_details = False
Setting this to true will enable the details view. This is recommended when there are too many columns to
display in the list_view.

column_details_exclude_1list = None
Collection of fields excluded from the details view.

34 Chapter 4. API

’

page_size=1

Flask-Admin documentation, Release 1.4.0

column_details_list = None
Collection of the field names included in the details view. If set to None, will get them from the model.

column_display_actions = True
Controls the display of the row actions (edit, delete, details, etc.) column in the list view.

Useful for preventing a blank column from displaying if your view does not use any build-in or custom
row actions.

This column is not hidden automatically due to backwards compatibility.
Note: This only affects display and does not control whether the row actions endpoints are accessible.

column_editable list = None
Collection of the columns which can be edited from the list view.

For example:

class MyModelView (BaseModelView) :
column_editable_list = ('name', 'last_name')

column_export_exclude_list = None
Collection of fields excluded from the export.

column_export_1list = None
Collection of the field names included in the export. If set to None, will get them from the model.

column_formatters_export = None
Dictionary of list view column formatters to be used for export.

Defaults to column_formatters when set to None.
Functions the same way as column_formatters except that macros are not supported.

column_type_formatters_export = None
Dictionary of value type formatters to be used in the export.

By default, two t