

Flask-Admin

Why Flask? As a micro-framework, Flask [http://flask.pocoo.org/] lets you build web services with very little overhead.
It offers freedom for you, the designer, to implement your project in a way that suits your
particular application.

Why Flask-Admin? In a world of micro-services and APIs, Flask-Admin solves
the boring problem of building an admin interface on top
of an existing data model. With little effort, it lets
you manage your web service’s data through a user-friendly interface.

How does it work? The basic concept behind Flask-Admin, is that it lets you
build complicated interfaces by grouping individual views
together in classes: Each web page you see on the frontend, represents a
method on a class that has explicitly been added to the interface.

These view classes are especially helpful when they are tied to particular
database models,
because they let you group together all of the usual
Create, Read, Update, Delete (CRUD) view logic into a single, self-contained
class for each of your models.

What does it look like? Clone the GitHub repository [https://github.com/flask-admin/flask-admin]
and run the provided examples locally to get a feel for Flask-Admin. There are several to choose from
in the examples directory.

	Introduction To Flask-Admin
	Getting Started

	Authorization & Permissions

	Customizing Built-in Views

	Grouping Views

	Adding Your Own Views

	Working With the Built-in Templates

	Advanced Functionality
	Enabling CSRF Protection

	Localization With Flask-Babelex

	Managing Files & Folders

	Adding A Redis Console

	Replacing Individual Form Fields

	Managing Geographical Models

	Customising Builtin Forms Via Rendering Rules

	Using Different Database Backends

	Migrating From Django

	Overriding the Form Scaffolding

	Customizing Batch Actions

	Adding A Model Backend
	Extending BaseModelView

	Implementing filters

	API
	flask_admin.base

	flask_admin.helpers

	flask_admin.model

	flask_admin.form

	flask_admin.form.rules

	flask_admin.form.fields

	flask_admin.form.upload

	flask_admin.tools

	flask_admin.actions

	flask_admin.contrib.sqla

	flask_admin.contrib.sqla.fields

	flask_admin.contrib.mongoengine

	flask_admin.contrib.mongoengine.fields

	flask_admin.contrib.peewee

	flask_admin.contrib.pymongo

	flask_admin.contrib.fileadmin

	flask_admin.model.template

	Changelog
	1.5.3

	1.5.2

	1.5.1

	1.5.0

	1.4.2

	1.4.1

	1.4.0

	1.3.0

Support

Python 2.7 and 3.3 or higher.

Indices And Tables

	Index

	Module Index

	Search Page

Introduction To Flask-Admin

Getting Started

Initialization

The first step is to initialize an empty admin interface for your Flask app:

from flask import Flask
from flask_admin import Admin

app = Flask(__name__)

set optional bootswatch theme
app.config['FLASK_ADMIN_SWATCH'] = 'cerulean'

admin = Admin(app, name='microblog', template_mode='bootstrap3')
Add administrative views here

app.run()

Here, both the name and template_mode parameters are optional. Alternatively,
you could use the init_app() method.

If you start this application and navigate to http://localhost:5000/admin/,
you should see an empty page with a navigation bar on top. Customize the look by
specifying a Bootswatch theme that suits your needs (see http://bootswatch.com/3/ for available swatches).

Adding Model Views

Model views allow you to add a dedicated set of admin pages for managing any model in your database. Do this by creating
instances of the ModelView class, which you can import from one of Flask-Admin’s built-in ORM backends. An example
is the SQLAlchemy backend, which you can use as follows:

from flask_admin.contrib.sqla import ModelView

Flask and Flask-SQLAlchemy initialization here

admin = Admin(app, name='microblog', template_mode='bootstrap3')
admin.add_view(ModelView(User, db.session))
admin.add_view(ModelView(Post, db.session))

Straight out of the box, this gives you a set of fully featured CRUD views for your model:

	A list view, with support for searching, sorting, filtering, and deleting records.

	A create view for adding new records.

	An edit view for updating existing records.

	An optional, read-only details view.

There are many options available for customizing the display and functionality of these built-in views.
For more details on that, see Customizing Built-in Views. For more details on the other
ORM backends that are available, see Using Different Database Backends.

Adding Content to the Index Page

The first thing you’ll notice when you visit http://localhost:5000/admin/
is that it’s just an empty page with a navigation menu. To add some content to this page, save the following text as admin/index.html in your project’s templates directory:

{% extends 'admin/master.html' %}

{% block body %}
 <p>Hello world</p>
{% endblock %}

This will override the default index template, but still give you the built-in navigation menu.
So, now you can add any content to the index page, while maintaining a consistent user experience.

Authorization & Permissions

When setting up an admin interface for your application, one of the first problems
you’ll want to solve is how to keep unwanted users out. With Flask-Admin there
are a few different ways of approaching this.

HTTP Basic Auth

Unfortunately, there is no easy way of applying HTTP Basic Auth just to your admin
interface.

The simplest form of authentication is HTTP Basic Auth. It doesn’t interfere
with your database models, and it doesn’t require you to write any new view logic or
template code. So it’s great for when you’re deploying something that’s still
under development, before you want the whole world to see it.

Have a look at Flask-BasicAuth [https://flask-basicauth.readthedocs.io/] to see just how
easy it is to put your whole application behind HTTP Basic Auth.

Rolling Your Own

For a more flexible solution, Flask-Admin lets you define access control rules
on each of your admin view classes by simply overriding the is_accessible method.
How you implement the logic is up to you, but if you were to use a low-level library like
Flask-Login [https://flask-login.readthedocs.io/], then restricting access
could be as simple as:

class MicroBlogModelView(sqla.ModelView):

 def is_accessible(self):
 return login.current_user.is_authenticated

 def inaccessible_callback(self, name, **kwargs):
 # redirect to login page if user doesn't have access
 return redirect(url_for('login', next=request.url))

In the navigation menu, components that are not accessible to a particular user will not be displayed
for that user. For an example of using Flask-Login with Flask-Admin, have a look
at https://github.com/flask-admin/Flask-Admin/tree/master/examples/auth-flask-login.

The main drawback is that you still need to implement all of the relevant login,
registration, and account management views yourself.

Using Flask-Security

If you want a more polished solution, you could
use Flask-Security [https://pythonhosted.org/Flask-Security/],
which is a higher-level library. It comes with lots of built-in views for doing
common things like user registration, login, email address confirmation, password resets, etc.

The only complicated bit is making the built-in Flask-Security views integrate smoothly with the
Flask-Admin templates to create a consistent user experience. To
do this, you will need to override the built-in Flask-Security templates and have them
extend the Flask-Admin base template by adding the following to the top
of each file:

{% extends 'admin/master.html' %}

Now, you’ll need to manually pass in some context variables for the Flask-Admin
templates to render correctly when they’re being called from the Flask-Security views.
Defining a security_context_processor function will take care of this for you:

def security_context_processor():
 return dict(
 admin_base_template=admin.base_template,
 admin_view=admin.index_view,
 h=admin_helpers,
)

For a working example of using Flask-Security with Flask-Admin, have a look at
https://github.com/flask-admin/Flask-Admin/tree/master/examples/auth.

The example only uses the built-in register and login views, but you could follow the same
approach for including the other views, like forgot_password, send_confirmation, etc.

Customizing Built-in Views

When inheriting from ModelView, values can be specified for numerous
configuration parameters. Use these to customize the views to suit your
particular models:

from flask_admin.contrib.sqla import ModelView

Flask and Flask-SQLAlchemy initialization here

class MicroBlogModelView(ModelView):
 can_delete = False # disable model deletion
 page_size = 50 # the number of entries to display on the list view

admin.add_view(MicroBlogModelView(User, db.session))
admin.add_view(MicroBlogModelView(Post, db.session))

Or, in much the same way, you can specify options for a single model at a time:

class UserView(ModelView):
 can_delete = False # disable model deletion

class PostView(ModelView):
 page_size = 50 # the number of entries to display on the list view

admin.add_view(UserView(User, db.session))
admin.add_view(PostView(Post, db.session))

ModelView Configuration Attributes

For a complete list of the attributes that are defined, have a look at the
API documentation for BaseModelView(). Here are
some of the most commonly used attributes:

To disable some of the CRUD operations, set any of these boolean parameters:

can_create = False
can_edit = False
can_delete = False

If your model has too much data to display in the list view, you can add a read-only
details view by setting:

can_view_details = True

Removing columns from the list view is easy, just pass a list of column names for
the column_excludes_list parameter:

column_exclude_list = ['password',]

To make columns searchable, or to use them for filtering, specify a list of column names:

column_searchable_list = ['name', 'email']
column_filters = ['country']

For a faster editing experience, enable inline editing in the list view:

column_editable_list = ['name', 'last_name']

Or, have the add & edit forms display inside a modal window on the list page, instead of
the dedicated create & edit pages:

create_modal = True
edit_modal = True

You can restrict the possible values for a text-field by specifying a list of select choices:

form_choices = {
 'title': [
 ('MR', 'Mr'),
 ('MRS', 'Mrs'),
 ('MS', 'Ms'),
 ('DR', 'Dr'),
 ('PROF', 'Prof.')
]
}

To remove fields from the create and edit forms:

form_excluded_columns = ['last_name', 'email']

To specify WTForms field arguments:

form_args = {
 'name': {
 'label': 'First Name',
 'validators': [required()]
 }
}

Or, to specify arguments to the WTForms widgets used to render those fields:

form_widget_args = {
 'description': {
 'rows': 10,
 'style': 'color: black'
 }
}

When your forms contain foreign keys, have those related models loaded via ajax, using:

form_ajax_refs = {
 'user': {
 'fields': ['first_name', 'last_name', 'email'],
 'page_size': 10
 }
}

To filter the results that are loaded via ajax, you can use:

form_ajax_refs = {
 'active_user': QueryAjaxModelLoader('user', db.session, User,
 filters=["is_active=True", "id>1000"])
}

To manage related models inline:

inline_models = ['post',]

These inline forms can be customized. Have a look at the API documentation for
inline_models().

To enable csv export of the model view:

can_export = True

This will add a button to the model view that exports records, truncating at export_max_rows.

Grouping Views

When adding a view, specify a value for the category parameter
to group related views together in the menu:

admin.add_view(UserView(User, db.session, category="Team"))
admin.add_view(ModelView(Role, db.session, category="Team"))
admin.add_view(ModelView(Permission, db.session, category="Team"))

This will create a top-level menu item named ‘Team’, and a drop-down containing
links to the three views.

To nest related views within these drop-downs, use the add_sub_category method:

admin.add_sub_category(name="Links", parent_name="Team")

And to add arbitrary hyperlinks to the menu:

admin.add_link(MenuLink(name='Home Page', url='/', category='Links'))

Adding Your Own Views

For situations where your requirements are really specific and you struggle to meet
them with the built-in ModelView class, Flask-Admin makes it easy for you to
take full control and add your own views to the interface.

Standalone Views

A set of standalone views (not tied to any particular model) can be added by extending the
BaseView class and defining your own view methods. For
example, to add a page that displays some analytics data from a 3rd-party API:

from flask_admin import BaseView, expose

class AnalyticsView(BaseView):
 @expose('/')
 def index(self):
 return self.render('analytics_index.html')

admin.add_view(AnalyticsView(name='Analytics', endpoint='analytics'))

This will add a link to the navbar for your view. Notice that
it is served at ‘/’, the root URL. This is a restriction on standalone views: at
the very minimum, each view class needs at least one method to serve a view at its root.

The analytics_index.html template for the example above, could look something like:

{% extends 'admin/master.html' %}
{% block body %}
 <p>Here I'm going to display some data.</p>
{% endblock %}

By extending the admin/master.html template, you can maintain a consistent user experience,
even while having tight control over your page’s content.

Overriding the Built-in Views

There may be some scenarios where you want most of the built-in ModelView
functionality, but you want to replace one of the default create, edit, or list views.
For this you could override only the view in question, and all the links to it will still function as you would expect:

from flask_admin.contrib.sqla import ModelView

Flask and Flask-SQLAlchemy initialization here

class UserView(ModelView):
 @expose('/new/', methods=('GET', 'POST'))
 def create_view(self):
 """
 Custom create view.
 """

 return self.render('create_user.html')

Working With the Built-in Templates

Flask-Admin uses the Jinja2 [http://jinja.pocoo.org/docs/] templating engine.

Extending the Built-in Templates

Rather than overriding the built-in templates completely, it’s best to extend them. This
will make it simpler for you to upgrade to new Flask-Admin versions in future.

Internally, the Flask-Admin templates are derived from the admin/master.html template.
The three most interesting templates for you to extend are probably:

	admin/model/list.html

	admin/model/create.html

	admin/model/edit.html

To extend the default edit template with your own functionality, create a template in
templates/microblog_edit.html to look something like:

{% extends 'admin/model/edit.html' %}

{% block body %}
 <h1>MicroBlog Edit View</h1>
 {{ super() }}
{% endblock %}

Now, to make your view classes use this template, set the appropriate class property:

class MicroBlogModelView(ModelView):
 edit_template = 'microblog_edit.html'
 # create_template = 'microblog_create.html'
 # list_template = 'microblog_list.html'

If you want to use your own base template, then pass the name of the template to
the admin constructor during initialization:

admin = Admin(app, base_template='microblog_master.html')

Overriding the Built-in Templates

To take full control over the style and layout of the admin interface, you can override
all of the built-in templates. Just keep in mind that the templates will change slightly
from one version of Flask-Admin to the next, so once you start overriding them, you
need to take care when upgrading your package version.

To override any of the built-in templates, simply copy them from
the Flask-Admin source into your project’s templates/admin/ directory.
As long as the filenames stay the same, the templates in your project directory should
automatically take precedence over the built-in ones.

Available Template Blocks

Flask-Admin defines one base template at admin/master.html that all other admin templates are derived
from. This template is a proxy which points to admin/base.html, which defines
the following blocks:

	Block Name

	Description

	head_meta

	Page metadata in the header

	title

	Page title

	head_css

	Various CSS includes in the header

	head

	Empty block in HTML head, in case you want to put something there

	page_body

	Page layout

	brand

	Logo in the menu bar

	main_menu

	Main menu

	menu_links

	Links menu

	access_control

	Section to the right of the menu (can be used to add login/logout buttons)

	messages

	Alerts and various messages

	body

	Content (that’s where your view will be displayed)

	tail

	Empty area below content

In addition to all of the blocks that are inherited from admin/master.html, the admin/model/list.html template
also contains the following blocks:

	Block Name

	Description

	model_menu_bar

	Menu bar

	model_list_table

	Table container

	list_header

	Table header row

	list_row_actions_header

	Actions header

	list_row

	Single row

	list_row_actions

	Row action cell with edit/remove/etc buttons

	empty_list_message

	Message that will be displayed if there are no models found

Have a look at the layout example at https://github.com/flask-admin/flask-admin/tree/master/examples/custom-layout
to see how you can take full stylistic control over the admin interface.

Environment Variables

While working in any of the templates that extend admin/master.html, you have access to a small number of
environment variables:

	Variable Name

	Description

	admin_view

	Current administrative view

	admin_base_template

	Base template name

	_gettext

	Babel gettext

	_ngettext

	Babel ngettext

	h

	Helpers from helpers module

Generating URLs

To generate the URL for a specific view, use url_for with a dot prefix:

from flask import url_for

class MyView(BaseView):
 @expose('/')
 def index(self):
 # Get URL for the test view method
 user_list_url = url_for('user.index_view')
 return self.render('index.html', user_list_url=user_list_url)

A specific record can also be referenced with:

Edit View for record #1 (redirect back to index_view)
url_for('user.edit_view', id=1, url=url_for('user.index_view'))

When referencing ModelView instances, use the lowercase name of the model as the
prefix when calling url_for. Other views can be referenced by specifying a
unique endpoint for each, and using that as the prefix. So, you could use:

url_for('analytics.index')

If your view endpoint was defined like:

admin.add_view(CustomView(name='Analytics', endpoint='analytics'))

Advanced Functionality

Enabling CSRF Protection

To add CSRF protection to the forms that are generated by ModelView instances, use the
SecureForm class in your ModelView subclass by specifying the form_base_class parameter:

from flask_admin.form import SecureForm
from flask_admin.contrib.sqla import ModelView

class CarAdmin(ModelView):
 form_base_class = SecureForm

SecureForm requires WTForms 2 or greater. It uses the WTForms SessionCSRF class
to generate and validate the tokens for you when the forms are submitted.

Localization With Flask-Babelex

Flask-Admin comes with translations for several languages.
Enabling localization is simple:

	Install Flask-BabelEx [http://github.com/mrjoes/flask-babelex/] to do the heavy
lifting. It’s a fork of the
Flask-Babel [http://github.com/mitshuhiko/flask-babel/] package:

pip install flask-babelex

	Initialize Flask-BabelEx by creating instance of Babel class:

from flask import Flask
from flask_babelex import Babel

app = Flask(__name__)
babel = Babel(app)

	Create a locale selector function:

@babel.localeselector
def get_locale():
 if request.args.get('lang'):
 session['lang'] = request.args.get('lang')
 return session.get('lang', 'en')

Now, you could try a French version of the application at: http://localhost:5000/admin/?lang=fr.

Go ahead and add your own logic to the locale selector function. The application can store locale in
a user profile, cookie, session, etc. It can also use the Accept-Language
header to make the selection automatically.

If the built-in translations are not enough, look at the Flask-BabelEx documentation [https://pythonhosted.org/Flask-BabelEx/]
to see how you can add your own.

Managing Files & Folders

To manage static files instead of database records, Flask-Admin comes with
the FileAdmin plug-in. It gives you the ability to upload, delete, rename, etc. You
can use it by adding a FileAdmin view to your app:

from flask_admin.contrib.fileadmin import FileAdmin

import os.path as op

Flask setup here

admin = Admin(app, name='microblog', template_mode='bootstrap3')

path = op.join(op.dirname(__file__), 'static')
admin.add_view(FileAdmin(path, '/static/', name='Static Files'))

FileAdmin also has out-of-the-box support for managing files located on a Amazon Simple Storage Service
bucket. To add it to your app:

from flask_admin import Admin
from flask_admin.contrib.fileadmin.s3 import S3FileAdmin

admin = Admin()

admin.add_view(S3FileAdmin('files_bucket', 'us-east-1', 'key_id', 'secret_key')

You can disable uploads, disable file deletion, restrict file uploads to certain types, etc.
Check flask_admin.contrib.fileadmin in the API documentation for more details.

Adding new file backends

You can also implement your own storage backend by creating a class that implements the same
methods defined in the LocalFileStorage class. Check flask_admin.contrib.fileadmin in the
API documentation for details on the methods.

Adding A Redis Console

Another plug-in that’s available is the Redis Console. If you have a Redis
instance running on the same machine as your app, you can:

from redis import Redis
from flask_admin.contrib import rediscli

Flask setup here

admin = Admin(app, name='microblog', template_mode='bootstrap3')

admin.add_view(rediscli.RedisCli(Redis()))

Replacing Individual Form Fields

The form_overrides attribute allows you to replace individual fields within a form.
A common use-case for this would be to add a What-You-See-Is-What-You-Get (WYSIWIG) editor, or to handle
file / image uploads that need to be tied to a field in your model.

WYSIWIG Text Fields

To handle complicated text content, you can use
CKEditor [http://ckeditor.com/] by subclassing some of the built-in WTForms
classes as follows:

from wtforms import TextAreaField
from wtforms.widgets import TextArea

class CKTextAreaWidget(TextArea):
 def __call__(self, field, **kwargs):
 if kwargs.get('class'):
 kwargs['class'] += ' ckeditor'
 else:
 kwargs.setdefault('class', 'ckeditor')
 return super(CKTextAreaWidget, self).__call__(field, **kwargs)

class CKTextAreaField(TextAreaField):
 widget = CKTextAreaWidget()

class MessageAdmin(ModelView):
 extra_js = ['//cdn.ckeditor.com/4.6.0/standard/ckeditor.js']

 form_overrides = {
 'body': CKTextAreaField
 }

File & Image Fields

Flask-Admin comes with a built-in FileUploadField()
and ImageUploadField(). To make use
of them, you’ll need to specify an upload directory and add them to the forms in question.
Image handling also requires you to have Pillow [https://pypi.python.org/pypi/Pillow/2.8.2]
installed if you need to do any processing on the image files.

Have a look at the example at
https://github.com/flask-admin/Flask-Admin/tree/master/examples/forms-files-images.

If you are using the MongoEngine backend, Flask-Admin supports GridFS-backed image and file uploads through WTForms fields. Documentation can be found at flask_admin.contrib.mongoengine.fields.

If you just want to manage static files in a directory, without tying them to a database model, then
use the File-Admin plug-in.

Managing Geographical Models

If you want to store spatial information in a GIS database, Flask-Admin has
you covered. The GeoAlchemy backend extends the SQLAlchemy backend (just as
GeoAlchemy [https://geoalchemy-2.readthedocs.io/] extends SQLAlchemy) to give you a pretty and functional map-based
editor for your admin pages.

Some notable features include:

	Maps are displayed using the amazing Leaflet [http://leafletjs.com/] Javascript library,
with map data from Mapbox [https://www.mapbox.com/].

	Geographic information, including points, lines and polygons, can be edited
interactively using Leaflet.Draw [https://github.com/Leaflet/Leaflet.draw].

	Graceful fallback: GeoJSON [http://geojson.org/] data can be edited in a <textarea>, if the
user has turned off Javascript.

	Works with a Geometry [https://geoalchemy-2.readthedocs.io/en/latest/types.html#geoalchemy2.types.Geometry] SQL field that is integrated with Shapely [http://toblerity.org/shapely/] objects.

To get started, define some fields on your model using GeoAlchemy’s Geometry
field. Next, add model views to your interface using the ModelView class
from the GeoAlchemy backend, rather than the usual SQLAlchemy backend:

from geoalchemy2 import Geometry
from flask_admin.contrib.geoa import ModelView

.. flask initialization
db = SQLAlchemy(app)

class Location(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(64), unique=True)
 point = db.Column(Geometry("POINT"))

Some of the Geometry field types that are available include:
“POINT”, “MULTIPOINT”, “POLYGON”, “MULTIPOLYGON”, “LINESTRING” and “MULTILINESTRING”.

Have a look at https://github.com/flask-admin/flask-admin/tree/master/examples/geo_alchemy
to get started.

Loading Tiles From Mapbox

To have map data display correctly, you’ll have to sign up for an account at https://www.mapbox.com/
and include some credentials in your application’s config:

app = Flask(__name__)
app.config['MAPBOX_MAP_ID'] = "example.abc123"
app.config['MAPBOX_ACCESS_TOKEN'] = "pk.def456"

Leaflet supports loading map tiles from any arbitrary map tile provider, but
at the moment, Flask-Admin only supports Mapbox. If you want to use other
providers, make a pull request!

Limitations

There’s currently no way to sort, filter, or search on geometric fields
in the admin. It’s not clear that there’s a good way to do so.
If you have any ideas or suggestions, make a pull request!

Customising Builtin Forms Via Rendering Rules

Before version 1.0.7, all model backends were rendering the create and edit forms
using a special Jinja2 macro, which was looping over the fields of a WTForms form object and displaying
them one by one. This works well, but it is difficult to customize.

Starting from version 1.0.7, Flask-Admin supports form rendering rules, to give you fine grained control of how
the forms for your modules should be displayed.

The basic idea is pretty simple: the customizable rendering rules replace a static macro, so you can tell
Flask-Admin how each form should be rendered. As an extension, however, the rendering rules also let you do a
bit more: You can use them to output HTML, call Jinja2 macros, render fields, and so on.

Essentially, form rendering rules separate the form rendering from the form definition.
For example, it no longer matters in which sequence your form fields are defined.

To start using the form rendering rules, put a list of form field names into the form_create_rules
property one of your admin views:

class RuleView(sqla.ModelView):
 form_create_rules = ('email', 'first_name', 'last_name')

In this example, only three fields will be rendered and email field will be above other two fields.

Whenever Flask-Admin sees a string value in form_create_rules, it automatically assumes that it is a
form field reference and creates a flask_admin.form.rules.Field class instance for that field.

Let’s say we want to display some text between the email and first_name fields. This can be accomplished by
using the flask_admin.form.rules.Text class:

from flask_admin.form import rules

class RuleView(sqla.ModelView):
 form_create_rules = ('email', rules.Text('Foobar'), 'first_name', 'last_name')

Built-in Rules

Flask-Admin comes with few built-in rules that can be found in the flask_admin.form.rules module:

	Form Rendering Rule

	Description

	flask_admin.form.rules.BaseRule

	All rules derive from this class

	flask_admin.form.rules.NestedRule

	Allows rule nesting, useful for HTML containers

	flask_admin.form.rules.Text

	Simple text rendering rule

	flask_admin.form.rules.HTML

	Same as Text rule, but does not escape the text

	flask_admin.form.rules.Macro

	Calls macro from current Jinja2 context

	flask_admin.form.rules.Container

	Wraps child rules into container rendered by macro

	flask_admin.form.rules.Field

	Renders single form field

	flask_admin.form.rules.Header

	Renders form header

	flask_admin.form.rules.FieldSet

	Renders form header and child rules

Using Different Database Backends

Other than SQLAlchemy… There are five different backends for you to choose
from, depending on which database you would like to use for your application. If, however, you need
to implement your own database backend, have a look at Adding A Model Backend.

If you don’t know where to start, but you’re familiar with relational databases, then you should probably look at using
SQLAlchemy. It is a full-featured toolkit, with support for SQLite, PostgreSQL, MySQL,
Oracle and MS-SQL amongst others. It really comes into its own once you have lots of data, and a fair amount of
relations between your data models. If you want to track spatial data like latitude/longitude
points, you should look into GeoAlchemy [https://geoalchemy-2.readthedocs.io/], as well.

SQLAlchemy

Notable features:

	SQLAlchemy 0.6+ support

	Paging, sorting, filters

	Proper model relationship handling

	Inline editing of related models

Multiple Primary Keys

Flask-Admin has limited support for models with multiple primary keys. It only covers specific case when
all but one primary keys are foreign keys to another model. For example, model inheritance following
this convention.

Let’s Model a car with its tyres:

class Car(db.Model):
 __tablename__ = 'cars'
 id = db.Column(db.Integer, primary_key=True, autoincrement=True)
 desc = db.Column(db.String(50))

 def __unicode__(self):
 return self.desc

class Tyre(db.Model):
 __tablename__ = 'tyres'
 car_id = db.Column(db.Integer, db.ForeignKey('cars.id'), primary_key=True)
 tyre_id = db.Column(db.Integer, primary_key=True)
 car = db.relationship('Car', backref='tyres')
 desc = db.Column(db.String(50))

A specific tyre is identified by using the two primary key columns of the Tyre class, of which the car_id key
is itself a foreign key to the class Car.

To be able to CRUD the Tyre class, you need to enumerate columns when defining the AdminView:

class TyreAdmin(sqla.ModelView):
 form_columns = ['car', 'tyre_id', 'desc']

The form_columns needs to be explicit, as per default only one primary key is displayed.

When having multiple primary keys, no validation for uniqueness prior to saving of the object will be done. Saving
a model that violates a unique-constraint leads to an Sqlalchemy-Integrity-Error. In this case, Flask-Admin displays
a proper error message and you can change the data in the form. When the application has been started with debug=True
the werkzeug debugger will catch the exception and will display the stacktrace.

MongoEngine

If you’re looking for something simpler than SQLAlchemy, and your data models
are reasonably self-contained, then MongoDB [https://www.mongodb.org/], a popular NoSQL database,
could be a better option.

MongoEngine [http://mongoengine.org/] is a python wrapper for MongoDB.
For an example of using MongoEngine with Flask-Admin, see
https://github.com/flask-admin/flask-admin/tree/master/examples/mongoengine.

Features:

	MongoEngine 0.7+ support

	Paging, sorting, filters, etc

	Supports complex document structure (lists, subdocuments and so on)

	GridFS support for file and image uploads

In order to use MongoEngine integration, install the
Flask-MongoEngine [https://flask-mongoengine.readthedocs.io] package.
Flask-Admin uses form scaffolding from it.

Known issues:

	Search functionality can’t split query into multiple terms due to
MongoEngine query language limitations

For more, check the mongoengine API documentation.

Peewee

Features:

	Peewee 2.x+ support;

	Paging, sorting, filters, etc;

	Inline editing of related models;

In order to use peewee integration, you need to install two additional Python
packages: peewee [http://docs.peewee-orm.com/] and wtf-peewee [https://github.com/coleifer/wtf-peewee/].

Known issues:

	Many-to-Many model relations are not supported: there’s no built-in way to express M2M relation in Peewee

For more, check the peewee API documentation. Or look at
the Peewee example at https://github.com/flask-admin/flask-admin/tree/master/examples/peewee.

PyMongo

The bare minimum you have to provide for Flask-Admin to work with PyMongo:

	A list of columns by setting column_list property

	Provide form to use by setting form property

	When instantiating flask_admin.contrib.pymongo.ModelView class, you have to provide PyMongo collection object

This is minimal PyMongo view:

class UserForm(Form):
 name = StringField('Name')
 email = StringField('Email')

class UserView(ModelView):
 column_list = ('name', 'email')
 form = UserForm

if __name__ == '__main__':
 admin = Admin(app)

 # 'db' is PyMongo database object
 admin.add_view(UserView(db['users']))

On top of that you can add sortable columns, filters, text search, etc.

For more, check the pymongoe API documentation. Or look at
the Peewee example at https://github.com/flask-admin/flask-admin/tree/master/examples/pymongo.

Migrating From Django

If you are used to Django [https://www.djangoproject.com/] and the django-admin package, you will find
Flask-Admin to work slightly different from what you would expect.

Design Philosophy

In general, Django and django-admin strives to make life easier by implementing sensible defaults. So a developer
will be able to get an application up in no time, but it will have to conform to most of the defaults. Of course it
is possible to customize things, but this often requires a good understanding of what’s going on behind the scenes,
and it can be rather tricky and time-consuming.

The design philosophy behind Flask is slightly different. It embraces the diversity that one tends to find in web
applications by not forcing design decisions onto the developer. Rather than making it very easy to build an
application that almost solves your whole problem, and then letting you figure out the last bit, Flask aims to make it
possible for you to build the whole application. It might take a little more effort to get started, but once you’ve
got the hang of it, the sky is the limit… Even when your application is a little different from most other
applications out there on the web.

Flask-Admin follows this same design philosophy. So even though it provides you with several tools for getting up &
running quickly, it will be up to you, as a developer, to tell Flask-Admin what should be displayed and how. Even
though it is easy to get started with a simple CRUD [http://en.wikipedia.org/wiki/Create,_read,_update_and_delete]
interface for each model in your application, Flask-Admin doesn’t fix you to this approach, and you are free to
define other ways of interacting with some, or all, of your models.

Due to Flask-Admin supporting more than one ORM (SQLAlchemy, MongoEngine, Peewee, raw pymongo), the developer is even
free to mix different model types into one application by instantiating appropriate CRUD classes.

Here is a list of some of the configuration properties that are made available by Flask-Admin and the
SQLAlchemy backend. You can also see which django-admin properties they correspond to:

	Django

	Flask-Admin

	actions

	actions

	exclude

	form_excluded_columns

	fields

	form_columns

	form

	form

	formfield_overrides

	form_args

	inlines

	inline_models

	list_display

	column_list

	list_filter

	column_filters

	list_per_page

	page_size

	search_fields

	column_searchable_list

	add_form_template

	create_template

	change_form_template

	change_form_template

You might want to check BaseModelView for basic model configuration options (reused by all model
backends) and specific backend documentation, for example
ModelView. There’s much more
than what is displayed in this table.

Overriding the Form Scaffolding

If you don’t want to the use the built-in Flask-Admin form scaffolding logic, you are free to roll your own
by simply overriding scaffold_form(). For example, if you use
WTForms-Alchemy [https://github.com/kvesteri/wtforms-alchemy], you could put your form generation code
into a scaffold_form method in your ModelView class.

For SQLAlchemy, if the synonym_property does not return a SQLAlchemy field, then Flask-Admin won’t be able to figure out what to
do with it, so it won’t generate a form field. In this case, you would need to manually contribute your own field:

class MyView(ModelView):
 def scaffold_form(self):
 form_class = super(UserView, self).scaffold_form()
 form_class.extra = StringField('Extra')
 return form_class

Customizing Batch Actions

If you want to add other batch actions to the list view, besides the default delete action,
then you can define a function that implements the desired logic and wrap it with the @action decorator.

The action decorator takes three parameters: name, text and confirmation.
While the wrapped function should accept only one parameter - ids:

from flask_admin.actions import action

class UserView(ModelView):
 @action('approve', 'Approve', 'Are you sure you want to approve selected users?')
 def action_approve(self, ids):
 try:
 query = User.query.filter(User.id.in_(ids))

 count = 0
 for user in query.all():
 if user.approve():
 count += 1

 flash(ngettext('User was successfully approved.',
 '%(count)s users were successfully approved.',
 count,
 count=count))
 except Exception as ex:
 if not self.handle_view_exception(ex):
 raise

 flash(gettext('Failed to approve users. %(error)s', error=str(ex)), 'error')

Adding A Model Backend

Flask-Admin makes a few assumptions about the database models that it works with. If you want to implement your own
database backend, and still have Flask-Admin’s model views work as expected, then you should take note of the following:

	Each model must have one field which acts as a primary key to uniquely identify instances of that model.
However, there are no restriction on the data type or the field name of the primary key field.

	Models must make their data accessible as python properties.

If that is the case, then you can implement your own database backend by extending the BaseModelView class,
and implementing the set of scaffolding methods listed below.

Extending BaseModelView

Start off by defining a new class, which derives from from BaseModelView:

class MyDbModel(BaseModelView):
 pass

This class inherits BaseModelView’s __init__ method, which accepts a model class as first argument. The model
class is stored as the attribute self.model so that other methods may access it.

Now, implement the following scaffolding methods for the new class:

	get_pk_value()

This method returns a primary key value from
the model instance. In the SQLAlchemy backend, it gets the primary key from the model
using scaffold_pk(), caches it
and then returns the value from the model whenever requested.

For example:

class MyDbModel(BaseModelView):
 def get_pk_value(self, model):
 return self.model.id

	scaffold_list_columns()

Returns a list of columns to be displayed in a list view. For example:

class MyDbModel(BaseModelView):
 def scaffold_list_columns(self):
 columns = []

 for p in dir(self.model):
 attr = getattr(self.model, p)
 if isinstance(attr, MyDbColumn):
 columns.append(p)

 return columns

	scaffold_sortable_columns()

Returns a dictionary of sortable columns. The keys in the dictionary should correspond to the model’s
field names. The values should be those variables that will be used for sorting.

For example, in the SQLAlchemy backend it is possible to sort by a foreign key field. So, if there is a
field named user, which is a foreign key for the Users table, and the Users table also has a name
field, then the key will be user and value will be Users.name.

If your backend does not support sorting, return
None or an empty dictionary.

	init_search()

Initialize search functionality. If your backend supports
full-text search, do initializations and return True.
If your backend does not support full-text search, return
False.

For example, SQLAlchemy backend reads value of the self.searchable_columns and verifies if all fields are of
text type, if they’re local to the current model (if not,
it will add a join, etc) and caches this information for
future use.

	scaffold_form()

Generate WTForms form class from the model.

For example:

class MyDbModel(BaseModelView):
 def scaffold_form(self):
 class MyForm(Form):
 pass

 # Do something
 return MyForm

	get_list()

This method should return list of model instances with paging,
sorting, etc applied.

For SQLAlchemy backend it looks like:

	If search was enabled and provided search value is not empty,
generate LIKE statements for each field from self.searchable_columns

	If filter values were passed, call apply method
with values:

for flt, value in filters:
 query = self._filters[flt].apply(query, value)

	Execute query to get total number of rows in the
database (count)

	If sort_column was passed, will do something like (with some extra FK logic which is omitted in this example):

if sort_desc:
 query = query.order_by(desc(sort_field))
else:
 query = query.order_by(sort_field)

	Apply paging

	Return count, list as a tuple

	get_one()

Return a model instance by its primary key.

	create_model()

Create a new instance of the model from the Form object.

	update_model()

Update the model instance with data from the form.

	delete_model()

Delete the specified model instance from the data store.

	is_valid_filter()

Verify whether the given object is a valid filter.

	scaffold_filters()

Return a list of filter objects for one model field.

This method will be called once for each entry in the
self.column_filters setting.

If your backend does not know how to generate filters
for the provided field, it should return None.

For example:

class MyDbModel(BaseModelView):
 def scaffold_filters(self, name):
 attr = getattr(self.model, name)

 if isinstance(attr, MyDbTextField):
 return [MyEqualFilter(name, name)]

Implementing filters

Each model backend should have its own set of filter implementations. It is not possible to use the
filters from SQLAlchemy models in a non-SQLAlchemy backend.
This also means that different backends might have different set of available filters.

The filter is a class derived from BaseFilter which implements at least two methods:

	apply()

	operation()

apply method accepts two parameters: query object and a value from the client. Here you can add
filtering logic for the filter type.

Lets take SQLAlchemy model backend as an example:

All SQLAlchemy filters derive from BaseSQLAFilter class.

Each filter implements one simple filter SQL operation (like, not like, greater, etc) and accepts a column as
input parameter.

Whenever model view wants to apply a filter to a query
object, it will call apply method in a filter class
with a query and value. Filter will then apply
real filter operation.

For example:

class MyBaseFilter(BaseFilter):
 def __init__(self, column, name, options=None, data_type=None):
 super(MyBaseFilter, self).__init__(name, options, data_type)

 self.column = column

class MyEqualFilter(MyBaseFilter):
 def apply(self, query, value):
 return query.filter(self.column == value)

 def operation(self):
 return gettext('equals')

 # You can validate values. If value is not valid,
 # return `False`, so filter will be ignored.
 def validate(self, value):
 return True

 # You can "clean" values before they will be
 # passed to the your data access layer
 def clean(self, value):
 return value

Feel free ask questions if you have problems adding a new model backend.
Also, if you get stuck, try taking a look at the SQLAlchemy model backend and use it as a reference.

API

	flask_admin.base
	Base View

	Default view

	Admin

	flask_admin.helpers

	flask_admin.model

	flask_admin.form

	flask_admin.form.rules

	flask_admin.form.fields

	flask_admin.form.upload

	flask_admin.tools

	flask_admin.actions

	flask_admin.contrib.sqla

	flask_admin.contrib.sqla.fields

	flask_admin.contrib.mongoengine

	flask_admin.contrib.mongoengine.fields

	flask_admin.contrib.peewee

	flask_admin.contrib.pymongo

	flask_admin.contrib.fileadmin

	flask_admin.model.template

flask_admin.base

Base View

	
expose(url='/', methods=('GET',))

	Use this decorator to expose views in your view classes.

	Parameters

	
	url – Relative URL for the view

	methods – Allowed HTTP methods. By default only GET is allowed.

	
expose_plugview(url='/')

	Decorator to expose Flask’s pluggable view classes
(flask.views.View or flask.views.MethodView).

	Parameters

	url – Relative URL for the view

New in version 1.0.4.

	
class BaseView(name=None, category=None, endpoint=None, url=None, static_folder=None, static_url_path=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	Base administrative view.

Derive from this class to implement your administrative interface piece. For example:

from flask_admin import BaseView, expose
class MyView(BaseView):
 @expose('/')
 def index(self):
 return 'Hello World!'

Icons can be added to the menu by using menu_icon_type and menu_icon_value. For example:

admin.add_view(MyView(name='My View', menu_icon_type='glyph', menu_icon_value='glyphicon-home'))

	
create_blueprint(admin)

	Create Flask blueprint.

	
get_url(endpoint, **kwargs)

	Generate URL for the endpoint. If you want to customize URL generation
logic (persist some query string argument, for example), this is
right place to do it.

	Parameters

	
	endpoint – Flask endpoint name

	kwargs – Arguments for url_for

	
inaccessible_callback(name, **kwargs)

	Handle the response to inaccessible views.

By default, it throw HTTP 403 error. Override this method to
customize the behaviour.

	
is_accessible()

	Override this method to add permission checks.

Flask-Admin does not make any assumptions about the authentication system used in your application, so it is
up to you to implement it.

By default, it will allow access for everyone.

	
is_visible()

	Override this method if you want dynamically hide or show administrative views
from Flask-Admin menu structure

By default, item is visible in menu.

Please note that item should be both visible and accessible to be displayed in menu.

	
render(template, **kwargs)

	Render template

	Parameters

	
	template – Template path to render

	kwargs – Template arguments

Default view

	
class AdminIndexView(name=None, category=None, endpoint=None, url=None, template='admin/index.html', menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	Default administrative interface index page when visiting the /admin/ URL.

It can be overridden by passing your own view class to the Admin constructor:

class MyHomeView(AdminIndexView):
 @expose('/')
 def index(self):
 arg1 = 'Hello'
 return self.render('admin/myhome.html', arg1=arg1)

admin = Admin(index_view=MyHomeView())

Also, you can change the root url from /admin to / with the following:

admin = Admin(
 app,
 index_view=AdminIndexView(
 name='Home',
 template='admin/myhome.html',
 url='/'
)
)

Default values for the index page are:

	If a name is not provided, ‘Home’ will be used.

	If an endpoint is not provided, will default to admin

	Default URL route is /admin.

	Automatically associates with static folder.

	Default template is admin/index.html

Admin

	
class Admin(app=None, name=None, url=None, subdomain=None, index_view=None, translations_path=None, endpoint=None, static_url_path=None, base_template=None, template_mode=None, category_icon_classes=None)

	Collection of the admin views. Also manages menu structure.

	
add_link(link)

	Add link to menu links collection.

	Parameters

	link – Link to add.

	
add_links(*args)

	Add one or more links to the menu links collection.

Examples:

admin.add_links(link1)
admin.add_links(link1, link2, link3, link4)
admin.add_links(*my_list)

	Parameters

	args – Argument list including the links to add.

	
add_menu_item(menu_item, target_category=None)

	Add menu item to menu tree hierarchy.

	Parameters

	
	menu_item – MenuItem class instance

	target_category – Target category name

	
add_sub_category(name, parent_name)

	Add a category of a given name underneath
the category with parent_name.

	Parameters

	
	name – The name of the new menu category.

	parent_name – The name of a parent_name category

	
add_view(view)

	Add a view to the collection.

	Parameters

	view – View to add.

	
add_views(*args)

	Add one or more views to the collection.

Examples:

admin.add_views(view1)
admin.add_views(view1, view2, view3, view4)
admin.add_views(*my_list)

	Parameters

	args – Argument list including the views to add.

	
init_app(app, index_view=None, endpoint=None, url=None)

	Register all views with the Flask application.

	Parameters

	app – Flask application instance

	
menu()

	Return the menu hierarchy.

	
menu_links()

	Return menu links.

flask_admin.helpers

	
get_current_view()

	Get current administrative view.

Forms

	
is_required_form_field(field)

	Check if form field has DataRequired or InputRequired validators.

	Parameters

	field – WTForms field to check

	
is_form_submitted()

	Check if current method is PUT or POST

	
validate_form_on_submit(form)

	If current method is PUT or POST, validate form and return validation status.

	
get_form_data()

	If current method is PUT or POST, return concatenated request.form with
request.files or None otherwise.

	
is_field_error(errors)

	Check if wtforms field has error without checking its children.

	Parameters

	errors – Errors list.

Jinja2 helpers

	
resolve_ctx(context)

	Resolve current Jinja2 context and store it for general consumption.

	
get_render_ctx()

	Get view template context.

flask_admin.model

	
class BaseModelView(model, name=None, category=None, endpoint=None, url=None, static_folder=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	Base model view.

This view does not make any assumptions on how models are stored or managed, but expects the following:

	The provided model is an object

	The model contains properties

	Each model contains an attribute which uniquely identifies it (i.e. a primary key for a database model)

	It is possible to retrieve a list of sorted models with pagination applied from a data source

	You can get one model by its identifier from the data source

Essentially, if you want to support a new data store, all you have to do is:

	Derive from the BaseModelView class

	Implement various data-related methods (get_list, get_one, create_model, etc)

	Implement automatic form generation from the model representation (scaffold_form)

	
can_create = True

	Is model creation allowed

	
can_edit = True

	Is model editing allowed

	
can_delete = True

	Is model deletion allowed

	
list_template = 'admin/model/list.html'

	Default list view template

	
edit_template = 'admin/model/edit.html'

	Default edit template

	
create_template = 'admin/model/create.html'

	Default create template

	
column_list

	Collection of the model field names for the list view.
If set to None, will get them from the model.

For example:

class MyModelView(BaseModelView):
 column_list = ('name', 'last_name', 'email')

(Added in 1.4.0) SQLAlchemy model attributes can be used instead of strings:

class MyModelView(BaseModelView):
 column_list = ('name', User.last_name)

	When using SQLAlchemy models, you can reference related columns like this::

	
	class MyModelView(BaseModelView):

	column_list = (‘<relationship>.<related column name>’,)

	
column_exclude_list

	Collection of excluded list column names.

For example:

class MyModelView(BaseModelView):
 column_exclude_list = ('last_name', 'email')

	
column_labels

	Dictionary where key is column name and value is string to display.

For example:

class MyModelView(BaseModelView):
 column_labels = dict(name='Name', last_name='Last Name')

	
column_descriptions = None

	Dictionary where key is column name and
value is description for list view column or add/edit form field.

For example:

class MyModelView(BaseModelView):
 column_descriptions = dict(
 full_name='First and Last name'
)

	
column_formatters

	Dictionary of list view column formatters.

For example, if you want to show price multiplied by
two, you can do something like this:

class MyModelView(BaseModelView):
 column_formatters = dict(price=lambda v, c, m, p: m.price*2)

or using Jinja2 macro in template:

from flask_admin.model.template import macro

class MyModelView(BaseModelView):
 column_formatters = dict(price=macro('render_price'))

in template
{% macro render_price(model, column) %}
 {{ model.price * 2 }}
{% endmacro %}

The Callback function has the prototype:

def formatter(view, context, model, name):
 # `view` is current administrative view
 # `context` is instance of jinja2.runtime.Context
 # `model` is model instance
 # `name` is property name
 pass

	
column_type_formatters

	Dictionary of value type formatters to be used in the list view.

By default, three types are formatted:

	None will be displayed as an empty string

	bool will be displayed as a checkmark if it is True

	list will be joined using ‘, ‘

If you don’t like the default behavior and don’t want any type formatters
applied, just override this property with an empty dictionary:

class MyModelView(BaseModelView):
 column_type_formatters = dict()

If you want to display NULL instead of an empty string, you can do
something like this. Also comes with bonus date formatter:

from datetime import date
from flask_admin.model import typefmt

def date_format(view, value):
 return value.strftime('%d.%m.%Y')

MY_DEFAULT_FORMATTERS = dict(typefmt.BASE_FORMATTERS)
MY_DEFAULT_FORMATTERS.update({
 type(None): typefmt.null_formatter,
 date: date_format
 })

class MyModelView(BaseModelView):
 column_type_formatters = MY_DEFAULT_FORMATTERS

Type formatters have lower priority than list column formatters.

The callback function has following prototype:

def type_formatter(view, value):
 # `view` is current administrative view
 # `value` value to format
 pass

	
column_display_pk

	Controls if the primary key should be displayed in the list view.

	
column_sortable_list

	Collection of the sortable columns for the list view.
If set to None, will get them from the model.

For example:

class MyModelView(BaseModelView):
 column_sortable_list = ('name', 'last_name')

If you want to explicitly specify field/column to be used while
sorting, you can use a tuple:

class MyModelView(BaseModelView):
 column_sortable_list = ('name', ('user', 'user.username'))

You can also specify multiple fields to be used while sorting:

class MyModelView(BaseModelView):
 column_sortable_list = (
 'name', ('user', ('user.first_name', 'user.last_name')))

When using SQLAlchemy models, model attributes can be used instead
of strings:

class MyModelView(BaseModelView):
 column_sortable_list = ('name', ('user', User.username))

	
column_searchable_list

	A collection of the searchable columns. It is assumed that only
text-only fields are searchable, but it is up to the model
implementation to decide.

Example:

class MyModelView(BaseModelView):
 column_searchable_list = ('name', 'email')

	
column_default_sort = None

	Default sort column if no sorting is applied.

Example:

class MyModelView(BaseModelView):
 column_default_sort = 'user'

You can use tuple to control ascending descending order. In following example, items
will be sorted in descending order:

class MyModelView(BaseModelView):
 column_default_sort = ('user', True)

If you want to sort by more than one column,
you can pass a list of tuples:

class MyModelView(BaseModelView):
 column_default_sort = [('name', True), ('last_name', True)]

	
column_choices = None

	Map choices to columns in list view

Example:

class MyModelView(BaseModelView):
 column_choices = {
 'my_column': [
 ('db_value', 'display_value'),
]
 }

	
column_filters = None

	Collection of the column filters.

Can contain either field names or instances of BaseFilter classes.

Example:

class MyModelView(BaseModelView):
 column_filters = ('user', 'email')

	
form = None

	Form class. Override if you want to use custom form for your model.
Will completely disable form scaffolding functionality.

For example:

class MyForm(Form):
 name = StringField('Name')

class MyModelView(BaseModelView):
 form = MyForm

	
form_base_class = <class 'flask_admin.form.BaseForm'>

	Base form class. Will be used by form scaffolding function when creating model form.

Useful if you want to have custom constructor or override some fields.

Example:

class MyBaseForm(Form):
 def do_something(self):
 pass

class MyModelView(BaseModelView):
 form_base_class = MyBaseForm

	
form_columns = None

	Collection of the model field names for the form. If set to None will
get them from the model.

Example:

class MyModelView(BaseModelView):
 form_columns = ('name', 'email')

(Added in 1.4.0) SQLAlchemy model attributes can be used instead of
strings:

class MyModelView(BaseModelView):
 form_columns = ('name', User.last_name)

SQLA Note: Model attributes must be on the same model as your ModelView
or you will need to use inline_models.

	
form_excluded_columns

	Collection of excluded form field names.

For example:

class MyModelView(BaseModelView):
 form_excluded_columns = ('last_name', 'email')

	
form_args = None

	Dictionary of form field arguments. Refer to WTForms documentation for
list of possible options.

Example:

from wtforms.validators import DataRequired
class MyModelView(BaseModelView):
 form_args = dict(
 name=dict(label='First Name', validators=[DataRequired()])
)

	
form_overrides = None

	Dictionary of form column overrides.

Example:

class MyModelView(BaseModelView):
 form_overrides = dict(name=wtf.FileField)

	
form_widget_args = None

	Dictionary of form widget rendering arguments.
Use this to customize how widget is rendered without using custom template.

Example:

class MyModelView(BaseModelView):
 form_widget_args = {
 'description': {
 'rows': 10,
 'style': 'color: black'
 },
 'other_field': {
 'disabled': True
 }
 }

Changing the format of a DateTimeField will require changes to both form_widget_args and form_args.

Example:

form_args = dict(
 start=dict(format='%Y-%m-%d %I:%M %p') # changes how the input is parsed by strptime (12 hour time)
)
form_widget_args = dict(
 start={
 'data-date-format': u'yyyy-mm-dd HH:ii P',
 'data-show-meridian': 'True'
 } # changes how the DateTimeField displays the time
)

	
form_extra_fields = None

	Dictionary of additional fields.

Example:

class MyModelView(BaseModelView):
 form_extra_fields = {
 'password': PasswordField('Password')
 }

You can control order of form fields using form_columns property. For example:

class MyModelView(BaseModelView):
 form_columns = ('name', 'email', 'password', 'secret')

 form_extra_fields = {
 'password': PasswordField('Password')
 }

In this case, password field will be put between email and secret fields that are autogenerated.

	
form_ajax_refs = None

	Use AJAX for foreign key model loading.

Should contain dictionary, where key is field name and value is either a dictionary which
configures AJAX lookups or backend-specific AjaxModelLoader class instance.

For example, it can look like:

class MyModelView(BaseModelView):
 form_ajax_refs = {
 'user': {
 'fields': ('first_name', 'last_name', 'email'),
 'placeholder': 'Please select',
 'page_size': 10,
 'minimum_input_length': 0,
 }
 }

Or with SQLAlchemy backend like this:

class MyModelView(BaseModelView):
 form_ajax_refs = {
 'user': QueryAjaxModelLoader('user', db.session, User, fields=['email'], page_size=10)
 }

If you need custom loading functionality, you can implement your custom loading behavior
in your AjaxModelLoader class.

	
form_create_rules = None

	Customized rules for the create form. Override form_rules if present.

	
form_edit_rules = None

	Customized rules for the edit form. Override form_rules if present.

	
action_disallowed_list

	Set of disallowed action names. For example, if you want to disable
mass model deletion, do something like this:

	class MyModelView(BaseModelView):

	action_disallowed_list = [‘delete’]

	
page_size = 20

	Default page size for pagination.

	
can_set_page_size = False

	Allows to select page size via dropdown list

	
action_form(obj=None)

	Instantiate model action form and return it.

Override to implement custom behavior.

	
action_view(*args, **kwargs)

	Mass-model action view.

	
after_model_change(form, model, is_created)

	Perform some actions after a model was created or updated and
committed to the database.

Called from create_model after successful database commit.

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that was created/updated

	is_created – True if model was created, False if model was updated

	
after_model_delete(model)

	Perform some actions after a model was deleted and
committed to the database.

Called from delete_model after successful database commit
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	model – Model that was deleted

	
ajax_update(*args, **kwargs)

	Edits a single column of a record in list view.

	
can_export = False

	Is model list export allowed

	
can_view_details = False

	Setting this to true will enable the details view. This is recommended
when there are too many columns to display in the list_view.

	
column_details_exclude_list = None

	Collection of fields excluded from the details view.

	
column_details_list = None

	Collection of the field names included in the details view.
If set to None, will get them from the model.

	
column_display_actions = True

	Controls the display of the row actions (edit, delete, details, etc.)
column in the list view.

Useful for preventing a blank column from displaying if your view does
not use any build-in or custom row actions.

This column is not hidden automatically due to backwards compatibility.

Note: This only affects display and does not control whether the row
actions endpoints are accessible.

	
column_editable_list = None

	Collection of the columns which can be edited from the list view.

For example:

class MyModelView(BaseModelView):
 column_editable_list = ('name', 'last_name')

	
column_export_exclude_list = None

	Collection of fields excluded from the export.

	
column_export_list = None

	Collection of the field names included in the export.
If set to None, will get them from the model.

	
column_extra_row_actions = None

	List of row actions (instances of BaseListRowAction).

Flask-Admin will generate standard per-row actions (edit, delete, etc)
and will append custom actions from this list right after them.

For example:

from flask_admin.model.template import EndpointLinkRowAction, LinkRowAction

class MyModelView(BaseModelView):
 column_extra_row_actions = [
 LinkRowAction('glyphicon glyphicon-off', 'http://direct.link/?id={row_id}'),
 EndpointLinkRowAction('glyphicon glyphicon-test', 'my_view.index_view')
]

	
column_formatters_detail = None

	Dictionary of list view column formatters to be used for the detail view.

Defaults to column_formatters when set to None.

Functions the same way as column_formatters except
that macros are not supported.

	
column_formatters_export = None

	Dictionary of list view column formatters to be used for export.

Defaults to column_formatters when set to None.

Functions the same way as column_formatters except
that macros are not supported.

	
column_type_formatters_detail = None

	Dictionary of value type formatters to be used in the detail view.

By default, two types are formatted:

	None will be displayed as an empty string

	list will be joined using ‘, ‘

Functions the same way as column_type_formatters.

	
column_type_formatters_export = None

	Dictionary of value type formatters to be used in the export.

By default, two types are formatted:

	None will be displayed as an empty string

	list will be joined using ‘, ‘

Functions the same way as column_type_formatters.

	
create_form(obj=None)

	Instantiate model creation form and return it.

Override to implement custom behavior.

	
create_modal = False

	Setting this to true will display the create_view as a modal dialog.

	
create_modal_template = 'admin/model/modals/create.html'

	Default create modal template

	
create_model(form)

	Create model from the form.

Returns the model instance if operation succeeded.

Must be implemented in the child class.

	Parameters

	form – Form instance

	
create_view(*args, **kwargs)

	Create model view

	
delete_form()

	Instantiate model delete form and return it.

Override to implement custom behavior.

The delete form originally used a GET request, so delete_form
accepts both GET and POST request for backwards compatibility.

	
delete_model(model)

	Delete model.

Returns True if operation succeeded.

Must be implemented in the child class.

	Parameters

	model – Model instance

	
delete_view(*args, **kwargs)

	Delete model view. Only POST method is allowed.

	
details_modal = False

	Setting this to true will display the details_view as a modal dialog.

	
details_modal_template = 'admin/model/modals/details.html'

	Default details modal view template

	
details_template = 'admin/model/details.html'

	Default details view template

	
details_view(*args, **kwargs)

	Details model view

	
edit_form(obj=None)

	Instantiate model editing form and return it.

Override to implement custom behavior.

	
edit_modal = False

	Setting this to true will display the edit_view as a modal dialog.

	
edit_modal_template = 'admin/model/modals/edit.html'

	Default edit modal template

	
edit_view(*args, **kwargs)

	Edit model view

	
export_max_rows = 0

	Maximum number of rows allowed for export.

Unlimited by default. Uses page_size if set to None.

	
export_types = ['csv']

	A list of available export filetypes. csv only is default, but any
filetypes supported by tablib can be used.

Check tablib for https://github.com/kennethreitz/tablib/blob/master/README.rst
for supported types.

	
form_rules = None

	List of rendering rules for model creation form.

This property changed default form rendering behavior and makes possible to rearrange order
of rendered fields, add some text between fields, group them, etc. If not set, will use
default Flask-Admin form rendering logic.

Here’s simple example which illustrates how to use:

from flask_admin.form import rules

class MyModelView(ModelView):
 form_rules = [
 # Define field set with header text and four fields
 rules.FieldSet(('first_name', 'last_name', 'email', 'phone'), 'User'),
 # ... and it is just shortcut for:
 rules.Header('User'),
 rules.Field('first_name'),
 rules.Field('last_name'),
 # ...
 # It is possible to create custom rule blocks:
 MyBlock('Hello World'),
 # It is possible to call macros from current context
 rules.Macro('my_macro', foobar='baz')
]

	
get_action_form()

	Create form class for a model action.

Override to implement customized behavior.

	
get_column_name(field)

	Return a human-readable column name.

	Parameters

	field – Model field name.

	
get_column_names(only_columns, excluded_columns)

	Returns a list of tuples with the model field name and formatted
field name.

	Parameters

	
	only_columns – List of columns to include in the results. If not set,
scaffold_list_columns will generate the list from the model.

	excluded_columns – List of columns to exclude from the results if only_columns
is not set.

	
get_create_form()

	Create form class for model creation view.

Override to implement customized behavior.

	
get_delete_form()

	Create form class for model delete view.

Override to implement customized behavior.

	
get_detail_value(context, model, name)

	Returns the value to be displayed in the detail view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_details_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_details_list
and not in column_details_exclude_list. If column_details_list
is not set, the columns from scaffold_list_columns will be used.

	
get_edit_form()

	Create form class for model editing view.

Override to implement customized behavior.

	
get_export_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_export_list
and not in column_export_exclude_list. If column_export_list is
not set, it will attempt to use the columns from column_list
or finally the columns from scaffold_list_columns will be used.

	
get_export_name(export_type='csv')

	
	Returns

	The exported csv file name.

	
get_export_value(model, name)

	Returns the value to be displayed in export.
Allows export to use different (non HTML) formatters.

	Parameters

	
	model – Model instance

	name – Field name

	
get_filter_arg(index, flt)

	Given a filter flt, return a unique name for that filter in
this view.

Does not include the flt[n]_ portion of the filter name.

	Parameters

	
	index – Filter index in _filters array

	flt – Filter instance

	
get_filters()

	Return a list of filter objects.

If your model backend implementation does not support filters,
override this method and return None.

	
get_form()

	Get form class.

If self.form is set, will return it and will call
self.scaffold_form otherwise.

Override to implement customized behavior.

	
get_list(page, sort_field, sort_desc, search, filters, page_size=None)

	Return a paginated and sorted list of models from the data source.

Must be implemented in the child class.

	Parameters

	
	page – Page number, 0 based. Can be set to None if it is first page.

	sort_field – Sort column name or None.

	sort_desc – If set to True, sorting is in descending order.

	search – Search query

	filters – List of filter tuples. First value in a tuple is a search
index, second value is a search value.

	page_size – Number of results. Defaults to ModelView’s page_size. Can be
overriden to change the page_size limit. Removing the page_size
limit requires setting page_size to 0 or False.

	
get_list_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_list
and not in column_exclude_list. If column_list is not set,
the columns from scaffold_list_columns will be used.

	
get_list_form()

	Get form class for the editable list view.

Uses only validators from form_args to build the form class.

Allows overriding the editable list view field/widget. For example:

from flask_admin.model.widgets import XEditableWidget

class CustomWidget(XEditableWidget):
 def get_kwargs(self, subfield, kwargs):
 if subfield.type == 'TextAreaField':
 kwargs['data-type'] = 'textarea'
 kwargs['data-rows'] = '20'
 # elif: kwargs for other fields

 return kwargs

class MyModelView(BaseModelView):
 def get_list_form(self):
 return self.scaffold_list_form(widget=CustomWidget)

	
get_list_row_actions()

	Return list of row action objects, each is instance of
BaseListRowAction

	
get_list_value(context, model, name)

	Returns the value to be displayed in the list view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_one(id)

	Return one model by its id.

Must be implemented in the child class.

	Parameters

	id – Model id

	
get_pk_value(model)

	Return PK value from a model object.

	
get_save_return_url(model, is_created=False)

	Return url where user is redirected after successful form save.

	Parameters

	
	model – Saved object

	is_created – Whether new object was created or existing one was updated

For example, redirect use to object details view after form save:

class MyModelView(ModelView):
 can_view_details = True

 def get_save_return_url(self, model, is_created):
 return self.get_url('.details_view', id=model.id)

	
get_sortable_columns()

	Returns a dictionary of the sortable columns. Key is a model
field name and value is sort column (for example - attribute).

If column_sortable_list is set, will use it. Otherwise, will call
scaffold_sortable_columns to get them from the model.

	
handle_filter(filter)

	Postprocess (add joins, etc) for a filter.

	Parameters

	filter – Filter object to postprocess

	
index_view(*args, **kwargs)

	List view

	
init_search()

	Initialize search. If data provider does not support search,
init_search will return False.

	
is_action_allowed(name)

	Override this method to allow or disallow actions based
on some condition.

The default implementation only checks if the particular action
is not in action_disallowed_list.

	
is_editable(name)

	Verify if column is editable.

	Parameters

	name – Column name.

	
is_sortable(name)

	Verify if column is sortable.

Not case-sensitive.

	Parameters

	name – Column name.

	
is_valid_filter(filter)

	Verify that the provided filter object is valid.

Override in model backend implementation to verify if
the provided filter type is allowed.

	Parameters

	filter – Filter object to verify.

	
list_form(obj=None)

	Instantiate model editing form for list view and return it.

Override to implement custom behavior.

	
named_filter_urls = False

	Set to True to use human-readable names for filters in URL parameters.

False by default so as to be robust across translations.

Changing this parameter will break any existing URLs that have filters.

	
on_form_prefill(form, id)

	Perform additional actions to pre-fill the edit form.

Called from edit_view, if the current action is rendering
the form rather than receiving client side input, after
default pre-filling has been performed.

By default does nothing.

You only need to override this if you have added custom
fields that depend on the database contents in a way that
Flask-admin can’t figure out by itself. Fields that were
added by name of a normal column or relationship should
work out of the box.

	Parameters

	
	form – Form instance

	id – id of the object that is going to be edited

	
on_model_change(form, model, is_created)

	Perform some actions before a model is created or updated.

Called from create_model and update_model in the same transaction
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that will be created/updated

	is_created – Will be set to True if model was created and to False if edited

	
on_model_delete(model)

	Perform some actions before a model is deleted.

Called from delete_model in the same transaction
(if it has any meaning for a store backend).

By default do nothing.

	
scaffold_filters(name)

	Generate filter object for the given name

	Parameters

	name – Name of the field

	
scaffold_form()

	Create form.BaseForm inherited class from the model. Must be
implemented in the child class.

	
scaffold_list_columns()

	Return list of the model field names. Must be implemented in
the child class.

Expected return format is list of tuples with field name and
display text. For example:

['name', 'first_name', 'last_name']

	
scaffold_list_form(widget=None, validators=None)

	Create form for the index_view using only the columns from
self.column_editable_list.

	Parameters

	
	widget – WTForms widget class. Defaults to XEditableWidget.

	validators – form_args dict with only validators
{‘name’: {‘validators’: [DataRequired()]}}

Must be implemented in the child class.

	
scaffold_sortable_columns()

	Returns dictionary of sortable columns. Must be implemented in
the child class.

Expected return format is a dictionary, where keys are field names and
values are property names.

	
search_placeholder()

	Return search placeholder.

	
simple_list_pager = False

	Enable or disable simple list pager.
If enabled, model interface would not run count query and will only show prev/next pager buttons.

	
update_model(form, model)

	Update model from the form.

Returns True if operation succeeded.

Must be implemented in the child class.

	Parameters

	
	form – Form instance

	model – Model instance

	
validate_form(form)

	Validate the form on submit.

	Parameters

	form – Form to validate

flask_admin.form

	
class BaseForm(formdata=None, obj=None, prefix=u'', **kwargs)

	

flask_admin.form.rules

	
class BaseRule

	Base form rule. All form formatting rules should derive from BaseRule.

	
__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature

	
class NestedRule(rules=[], separator='')

	Nested rule. Can contain child rules and render them.

	
__init__(rules=[], separator='')

	Constructor.

	Parameters

	
	rules – Child rule list

	separator – Default separator between rules when rendering them.

	
class Text(text, escape=True)

	Render text (or HTML snippet) from string.

	
__init__(text, escape=True)

	Constructor.

	Parameters

	
	text – Text to render

	escape – Should text be escaped or not. Default is True.

	
class HTML(html)

	Shortcut for Text rule with escape set to False.

	
__init__(html)

	Constructor.

	Parameters

	
	text – Text to render

	escape – Should text be escaped or not. Default is True.

	
class Macro(macro_name, **kwargs)

	Render macro by its name from current Jinja2 context.

	
__init__(macro_name, **kwargs)

	Constructor.

	Parameters

	
	macro_name – Macro name

	kwargs – Default macro parameters

	
class Container(macro_name, child_rule, **kwargs)

	Render container around child rule.

	
__init__(macro_name, child_rule, **kwargs)

	Constructor.

	Parameters

	
	macro_name – Macro name that will be used as a container

	child_rule – Child rule to be rendered inside of container

	kwargs – Container macro arguments

	
class Field(field_name, render_field='lib.render_field')

	Form field rule.

	
__init__(field_name, render_field='lib.render_field')

	Constructor.

	Parameters

	
	field_name – Field name to render

	render_field – Macro that will be used to render the field.

	
class Header(text, header_macro='lib.render_header')

	Render header text.

	
__init__(text, header_macro='lib.render_header')

	Constructor.

	Parameters

	
	text – Text to render

	header_macro – Header rendering macro

	
class FieldSet(rules, header=None, separator='')

	Field set with header.

	
__init__(rules, header=None, separator='')

	Constructor.

	Parameters

	
	rules – Child rules

	header – Header text

	separator – Child rule separator

flask_admin.form.fields

	
class TimeField(label=None, validators=None, formats=None, default_format=None, widget_format=None, **kwargs)

	A text field which stores a datetime.time object.
Accepts time string in multiple formats: 20:10, 20:10:00, 10:00 am, 9:30pm, etc.

	
class Select2Field(label=None, validators=None, coerce=<type 'unicode'>, choices=None, allow_blank=False, blank_text=None, **kwargs)

	Select2 [https://github.com/ivaynberg/select2] styled select widget.

You must include select2.js, form-x.x.x.js and select2 stylesheet for it to
work.

	
class Select2TagsField(label=None, validators=None, save_as_list=False, coerce=<type 'unicode'>, **kwargs)

	Select2 [http://ivaynberg.github.com/select2/#tags] styled text field.
You must include select2.js, form-x.x.x.js and select2 stylesheet for it to work.

flask_admin.form.upload

	
class FileUploadField(label=None, validators=None, base_path=None, relative_path=None, namegen=None, allowed_extensions=None, permission=438, allow_overwrite=True, **kwargs)

	Customizable file-upload field.

Saves file to configured path, handles updates and deletions. Inherits from StringField,
resulting filename will be stored as string.

	
__init__(label=None, validators=None, base_path=None, relative_path=None, namegen=None, allowed_extensions=None, permission=438, allow_overwrite=True, **kwargs)

	Constructor.

	Parameters

	
	label – Display label

	validators – Validators

	base_path – Absolute path to the directory which will store files

	relative_path – Relative path from the directory. Will be prepended to the file name for uploaded files.
Flask-Admin uses urlparse.urljoin to generate resulting filename, so make sure you have
trailing slash.

	namegen – Function that will generate filename from the model and uploaded file object.
Please note, that model is “dirty” model object, before it was committed to database.

For example:

import os.path as op

def prefix_name(obj, file_data):
 parts = op.splitext(file_data.filename)
 return secure_filename('file-%s%s' % parts)

class MyForm(BaseForm):
 upload = FileUploadField('File', namegen=prefix_name)

	allowed_extensions – List of allowed extensions. If not provided, will allow any file.

	allow_overwrite – Whether to overwrite existing files in upload directory. Defaults to True.

New in version 1.1.1: The allow_overwrite parameter was added.

	
class ImageUploadField(label=None, validators=None, base_path=None, relative_path=None, namegen=None, allowed_extensions=None, max_size=None, thumbgen=None, thumbnail_size=None, permission=438, url_relative_path=None, endpoint='static', **kwargs)

	Image upload field.

Does image validation, thumbnail generation, updating and deleting images.

Requires PIL (or Pillow) to be installed.

	
__init__(label=None, validators=None, base_path=None, relative_path=None, namegen=None, allowed_extensions=None, max_size=None, thumbgen=None, thumbnail_size=None, permission=438, url_relative_path=None, endpoint='static', **kwargs)

	Constructor.

	Parameters

	
	label – Display label

	validators – Validators

	base_path – Absolute path to the directory which will store files

	relative_path – Relative path from the directory. Will be prepended to the file name for uploaded files.
Flask-Admin uses urlparse.urljoin to generate resulting filename, so make sure you have
trailing slash.

	namegen – Function that will generate filename from the model and uploaded file object.
Please note, that model is “dirty” model object, before it was committed to database.

For example:

import os.path as op

def prefix_name(obj, file_data):
 parts = op.splitext(file_data.filename)
 return secure_filename('file-%s%s' % parts)

class MyForm(BaseForm):
 upload = FileUploadField('File', namegen=prefix_name)

	allowed_extensions – List of allowed extensions. If not provided, then gif, jpg, jpeg, png and tiff will be allowed.

	max_size – Tuple of (width, height, force) or None. If provided, Flask-Admin will
resize image to the desired size.

Width and height is in pixels. If force is set to True, will try to fit image into dimensions and
keep aspect ratio, otherwise will just resize to target size.

	thumbgen – Thumbnail filename generation function. All thumbnails will be saved as JPEG files,
so there’s no need to keep original file extension.

For example:

import os.path as op

def thumb_name(filename):
 name, _ = op.splitext(filename)
 return secure_filename('%s-thumb.jpg' % name)

class MyForm(BaseForm):
 upload = ImageUploadField('File', thumbgen=thumb_name)

	thumbnail_size – Tuple or (width, height, force) values. If not provided, thumbnail won’t be created.

Width and height is in pixels. If force is set to True, will try to fit image into dimensions and
keep aspect ratio, otherwise will just resize to target size.

	url_relative_path – Relative path from the root of the static directory URL. Only gets used when generating
preview image URLs.

For example, your model might store just file names (relative_path set to None), but
base_path is pointing to subdirectory.

	endpoint – Static endpoint for images. Used by widget to display previews. Defaults to ‘static’.

	
class FileUploadInput

	Renders a file input chooser field.

You can customize empty_template and data_template members to customize
look and feel.

	
class ImageUploadInput

	Renders a image input chooser field.

You can customize empty_template and data_template members to customize
look and feel.

flask_admin.tools

	
import_module(name, required=True)

	Import module by name

	Parameters

	
	name – Module name

	required – If set to True and module was not found - will throw exception.
If set to False and module was not found - will return None.
Default is True.

	
import_attribute(name)

	Import attribute using string reference.

	Parameters

	name – String reference.

Raises ImportError or AttributeError if module or attribute do not exist.

Example:

import_attribute('a.b.c.foo')

	
module_not_found(additional_depth=0)

	Checks if ImportError was raised because module does not exist or
something inside it raised ImportError

	Parameters

	additional_depth – supply int of depth of your call if you’re not doing
import on the same level of code - f.e., if you call function, which is
doing import, you should pass 1 for single additional level of depth

	
rec_getattr(obj, attr, default=None)

	Recursive getattr.

	Parameters

	
	attr – Dot delimited attribute name

	default – Default value

Example:

rec_getattr(obj, 'a.b.c')

flask_admin.actions

	
action(name, text, confirmation=None)

	Use this decorator to expose actions that span more than one
entity (model, file, etc)

	Parameters

	
	name – Action name

	text – Action text.

	confirmation – Confirmation text. If not provided, action will be executed
unconditionally.

	
class ActionsMixin

	Actions mixin.

In some cases, you might work with more than one “entity” (model, file, etc) in
your admin view and will want to perform actions on a group of entities simultaneously.

In this case, you can add this functionality by doing this:
1. Add this mixin to your administrative view class
2. Call init_actions in your class constructor
3. Expose actions view
4. Import actions.html library and add call library macros in your template

	
get_actions_list()

	Return a list and a dictionary of allowed actions.

	
handle_action(return_view=None)

	Handle action request.

	Parameters

	return_view – Name of the view to return to after the request.
If not provided, will return user to the return url in the form
or the list view.

	
init_actions()

	Initialize list of actions for the current administrative view.

	
is_action_allowed(name)

	Verify if action with name is allowed.

	Parameters

	name – Action name

flask_admin.contrib.sqla

SQLAlchemy model backend implementation.

	
class ModelView(model, session, name=None, category=None, endpoint=None, url=None, static_folder=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	SQLAlchemy model view

Usage sample:

admin = Admin()
admin.add_view(ModelView(User, db.session))

Class inherits configuration options from BaseModelView and they’re not displayed here.

	
column_auto_select_related

	Enable automatic detection of displayed foreign keys in this view
and perform automatic joined loading for related models to improve
query performance.

Please note that detection is not recursive: if __unicode__ method
of related model uses another model to generate string representation, it
will still make separate database call.

	
column_select_related_list

	List of parameters for SQLAlchemy subqueryload. Overrides column_auto_select_related
property.

For example:

class PostAdmin(ModelView):
 column_select_related_list = ('user', 'city')

You can also use properties:

class PostAdmin(ModelView):
 column_select_related_list = (Post.user, Post.city)

Please refer to the subqueryload on list of possible values.

	
column_searchable_list

	Collection of the searchable columns.

Example:

class MyModelView(ModelView):
 column_searchable_list = ('name', 'email')

You can also pass columns:

class MyModelView(ModelView):
 column_searchable_list = (User.name, User.email)

The following search rules apply:

	If you enter ZZZ in the UI search field, it will generate ILIKE '%ZZZ%'
statement against searchable columns.

	If you enter multiple words, each word will be searched separately, but
only rows that contain all words will be displayed. For example, searching
for abc def will find all rows that contain abc and def in one or
more columns.

	If you prefix your search term with ^, it will find all rows
that start with ^. So, if you entered ^ZZZ then ILIKE 'ZZZ%' will be used.

	If you prefix your search term with =, it will perform an exact match.
For example, if you entered =ZZZ, the statement ILIKE 'ZZZ' will be used.

	
column_filters = None

	Collection of the column filters.

Can contain either field names or instances of
flask_admin.contrib.sqla.filters.BaseSQLAFilter classes.

Filters will be grouped by name when displayed in the drop-down.

For example:

class MyModelView(BaseModelView):
 column_filters = ('user', 'email')

or:

from flask_admin.contrib.sqla.filters import BooleanEqualFilter

class MyModelView(BaseModelView):
 column_filters = (BooleanEqualFilter(column=User.name, name='Name'),)

or:

from flask_admin.contrib.sqla.filters import BaseSQLAFilter

class FilterLastNameBrown(BaseSQLAFilter):
 def apply(self, query, value, alias=None):
 if value == '1':
 return query.filter(self.column == "Brown")
 else:
 return query.filter(self.column != "Brown")

 def operation(self):
 return 'is Brown'

class MyModelView(BaseModelView):
 column_filters = [
 FilterLastNameBrown(
 User.last_name, 'Last Name', options=(('1', 'Yes'), ('0', 'No'))
)
]

	
filter_converter = <flask_admin.contrib.sqla.filters.FilterConverter object>

	Field to filter converter.

Override this attribute to use non-default converter.

	
model_form_converter = <class 'flask_admin.contrib.sqla.form.AdminModelConverter'>

	Model form conversion class. Use this to implement custom field conversion logic.

For example:

class MyModelConverter(AdminModelConverter):
 pass

class MyAdminView(ModelView):
 model_form_converter = MyModelConverter

	
inline_model_form_converter = <class 'flask_admin.contrib.sqla.form.InlineModelConverter'>

	Inline model conversion class. If you need some kind of post-processing for inline
forms, you can customize behavior by doing something like this:

class MyInlineModelConverter(InlineModelConverter):
 def post_process(self, form_class, info):
 form_class.value = wtf.StringField('value')
 return form_class

class MyAdminView(ModelView):
 inline_model_form_converter = MyInlineModelConverter

	
fast_mass_delete = False

	If set to False and user deletes more than one model using built in action,
all models will be read from the database and then deleted one by one
giving SQLAlchemy a chance to manually cleanup any dependencies (many-to-many
relationships, etc).

If set to True, will run a DELETE statement which is somewhat faster,
but may leave corrupted data if you forget to configure DELETE
CASCADE for your model.

	
inline_models = None

	Inline related-model editing for models with parent-child relations.

Accepts enumerable with one of the following possible values:

	Child model class:

class MyModelView(ModelView):
 inline_models = (Post,)

	Child model class and additional options:

class MyModelView(ModelView):
 inline_models = [(Post, dict(form_columns=['title']))]

	Django-like InlineFormAdmin class instance:

from flask_admin.model.form import InlineFormAdmin

class MyInlineModelForm(InlineFormAdmin):
 form_columns = ('title', 'date')

class MyModelView(ModelView):
 inline_models = (MyInlineModelForm(MyInlineModel),)

You can customize the generated field name by:

	Using the form_name property as a key to the options dictionary:

class MyModelView(ModelView):
 inline_models = ((Post, dict(form_label='Hello')))

	Using forward relation name and column_labels property:

class Model1(Base):
 pass

class Model2(Base):
 # ...
 model1 = relation(Model1, backref='models')

class MyModel1View(Base):
 inline_models = (Model2,)
 column_labels = {'models': 'Hello'}

	
form_choices = None

	Map choices to form fields

Example:

class MyModelView(BaseModelView):
 form_choices = {'my_form_field': [
 ('db_value', 'display_value'),
]}

	
form_optional_types = (<class 'sqlalchemy.sql.sqltypes.Boolean'>,)

	List of field types that should be optional if column is not nullable.

Example:

class MyModelView(BaseModelView):
 form_optional_types = (Boolean, Unicode)

	
action_form(obj=None)

	Instantiate model action form and return it.

Override to implement custom behavior.

	
action_view(*args, **kwargs)

	Mass-model action view.

	
after_model_change(form, model, is_created)

	Perform some actions after a model was created or updated and
committed to the database.

Called from create_model after successful database commit.

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that was created/updated

	is_created – True if model was created, False if model was updated

	
after_model_delete(model)

	Perform some actions after a model was deleted and
committed to the database.

Called from delete_model after successful database commit
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	model – Model that was deleted

	
ajax_update(*args, **kwargs)

	Edits a single column of a record in list view.

	
column_display_all_relations

	Controls if list view should display all relations, not only many-to-one.

	
create_blueprint(admin)

	Create Flask blueprint.

	
create_form(obj=None)

	Instantiate model creation form and return it.

Override to implement custom behavior.

	
create_model(form)

	Create model from form.

	Parameters

	form – Form instance

	
create_view(*args, **kwargs)

	Create model view

	
delete_form()

	Instantiate model delete form and return it.

Override to implement custom behavior.

The delete form originally used a GET request, so delete_form
accepts both GET and POST request for backwards compatibility.

	
delete_model(model)

	Delete model.

	Parameters

	model – Model to delete

	
delete_view(*args, **kwargs)

	Delete model view. Only POST method is allowed.

	
details_view(*args, **kwargs)

	Details model view

	
edit_form(obj=None)

	Instantiate model editing form and return it.

Override to implement custom behavior.

	
edit_view(*args, **kwargs)

	Edit model view

	
form_base_class

	alias of flask_admin.form.BaseForm

	
get_action_form()

	Create form class for a model action.

Override to implement customized behavior.

	
get_actions_list()

	Return a list and a dictionary of allowed actions.

	
get_column_name(field)

	Return a human-readable column name.

	Parameters

	field – Model field name.

	
get_column_names(only_columns, excluded_columns)

	Returns a list of tuples with the model field name and formatted
field name.

Overridden to handle special columns like InstrumentedAttribute.

	Parameters

	
	only_columns – List of columns to include in the results. If not set,
scaffold_list_columns will generate the list from the model.

	excluded_columns – List of columns to exclude from the results.

	
get_count_query()

	Return a the count query for the model type

A query(self.model).count() approach produces an excessive
subquery, so query(func.count('*')) should be used instead.

See commit #45a2723 for details.

	
get_create_form()

	Create form class for model creation view.

Override to implement customized behavior.

	
get_delete_form()

	Create form class for model delete view.

Override to implement customized behavior.

	
get_detail_value(context, model, name)

	Returns the value to be displayed in the detail view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_details_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_details_list
and not in column_details_exclude_list. If column_details_list
is not set, the columns from scaffold_list_columns will be used.

	
get_edit_form()

	Create form class for model editing view.

Override to implement customized behavior.

	
get_export_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_export_list
and not in column_export_exclude_list. If column_export_list is
not set, it will attempt to use the columns from column_list
or finally the columns from scaffold_list_columns will be used.

	
get_export_name(export_type='csv')

	
	Returns

	The exported csv file name.

	
get_export_value(model, name)

	Returns the value to be displayed in export.
Allows export to use different (non HTML) formatters.

	Parameters

	
	model – Model instance

	name – Field name

	
get_filter_arg(index, flt)

	Given a filter flt, return a unique name for that filter in
this view.

Does not include the flt[n]_ portion of the filter name.

	Parameters

	
	index – Filter index in _filters array

	flt – Filter instance

	
get_filters()

	Return a list of filter objects.

If your model backend implementation does not support filters,
override this method and return None.

	
get_form()

	Get form class.

If self.form is set, will return it and will call
self.scaffold_form otherwise.

Override to implement customized behavior.

	
get_list(page, sort_column, sort_desc, search, filters, execute=True, page_size=None)

	Return records from the database.

	Parameters

	
	page – Page number

	sort_column – Sort column name

	sort_desc – Descending or ascending sort

	search – Search query

	execute – Execute query immediately? Default is True

	filters – List of filter tuples

	page_size – Number of results. Defaults to ModelView’s page_size. Can be
overriden to change the page_size limit. Removing the page_size
limit requires setting page_size to 0 or False.

	
get_list_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_list
and not in column_exclude_list. If column_list is not set,
the columns from scaffold_list_columns will be used.

	
get_list_form()

	Get form class for the editable list view.

Uses only validators from form_args to build the form class.

Allows overriding the editable list view field/widget. For example:

from flask_admin.model.widgets import XEditableWidget

class CustomWidget(XEditableWidget):
 def get_kwargs(self, subfield, kwargs):
 if subfield.type == 'TextAreaField':
 kwargs['data-type'] = 'textarea'
 kwargs['data-rows'] = '20'
 # elif: kwargs for other fields

 return kwargs

class MyModelView(BaseModelView):
 def get_list_form(self):
 return self.scaffold_list_form(widget=CustomWidget)

	
get_list_row_actions()

	Return list of row action objects, each is instance of
BaseListRowAction

	
get_list_value(context, model, name)

	Returns the value to be displayed in the list view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_one(id)

	Return a single model by its id.

Example:

def get_one(self, id):
 query = self.get_query()
 return query.filter(self.model.id == id).one()

Also see get_query for how to filter the list view.

	Parameters

	id – Model id

	
get_pk_value(model)

	Return the primary key value from a model object.
If there are multiple primary keys, they’re encoded into string representation.

	
get_query()

	Return a query for the model type.

This method can be used to set a “persistent filter” on an index_view.

Example:

class MyView(ModelView):
 def get_query(self):
 return super(MyView, self).get_query().filter(User.username == current_user.username)

If you override this method, don’t forget to also override get_count_query, for displaying the correct
item count in the list view, and get_one, which is used when retrieving records for the edit view.

	
get_save_return_url(model, is_created=False)

	Return url where user is redirected after successful form save.

	Parameters

	
	model – Saved object

	is_created – Whether new object was created or existing one was updated

For example, redirect use to object details view after form save:

class MyModelView(ModelView):
 can_view_details = True

 def get_save_return_url(self, model, is_created):
 return self.get_url('.details_view', id=model.id)

	
get_sortable_columns()

	Returns a dictionary of the sortable columns. Key is a model
field name and value is sort column (for example - attribute).

If column_sortable_list is set, will use it. Otherwise, will call
scaffold_sortable_columns to get them from the model.

	
get_url(endpoint, **kwargs)

	Generate URL for the endpoint. If you want to customize URL generation
logic (persist some query string argument, for example), this is
right place to do it.

	Parameters

	
	endpoint – Flask endpoint name

	kwargs – Arguments for url_for

	
handle_action(return_view=None)

	Handle action request.

	Parameters

	return_view – Name of the view to return to after the request.
If not provided, will return user to the return url in the form
or the list view.

	
handle_filter(filter)

	Postprocess (add joins, etc) for a filter.

	Parameters

	filter – Filter object to postprocess

	
ignore_hidden = True

	Ignore field that starts with “_”

Example:

class MyModelView(BaseModelView):
 ignore_hidden = False

	
inaccessible_callback(name, **kwargs)

	Handle the response to inaccessible views.

By default, it throw HTTP 403 error. Override this method to
customize the behaviour.

	
index_view(*args, **kwargs)

	List view

	
init_actions()

	Initialize list of actions for the current administrative view.

	
init_search()

	Initialize search. Returns True if search is supported for this
view.

For SQLAlchemy, this will initialize internal fields: list of
column objects used for filtering, etc.

	
is_accessible()

	Override this method to add permission checks.

Flask-Admin does not make any assumptions about the authentication system used in your application, so it is
up to you to implement it.

By default, it will allow access for everyone.

	
is_action_allowed(name)

	Override this method to allow or disallow actions based
on some condition.

The default implementation only checks if the particular action
is not in action_disallowed_list.

	
is_editable(name)

	Verify if column is editable.

	Parameters

	name – Column name.

	
is_sortable(name)

	Verify if column is sortable.

Not case-sensitive.

	Parameters

	name – Column name.

	
is_valid_filter(filter)

	Verify that the provided filter object is valid.

Override in model backend implementation to verify if
the provided filter type is allowed.

	Parameters

	filter – Filter object to verify.

	
is_visible()

	Override this method if you want dynamically hide or show administrative views
from Flask-Admin menu structure

By default, item is visible in menu.

Please note that item should be both visible and accessible to be displayed in menu.

	
list_form(obj=None)

	Instantiate model editing form for list view and return it.

Override to implement custom behavior.

	
on_form_prefill(form, id)

	Perform additional actions to pre-fill the edit form.

Called from edit_view, if the current action is rendering
the form rather than receiving client side input, after
default pre-filling has been performed.

By default does nothing.

You only need to override this if you have added custom
fields that depend on the database contents in a way that
Flask-admin can’t figure out by itself. Fields that were
added by name of a normal column or relationship should
work out of the box.

	Parameters

	
	form – Form instance

	id – id of the object that is going to be edited

	
on_model_change(form, model, is_created)

	Perform some actions before a model is created or updated.

Called from create_model and update_model in the same transaction
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that will be created/updated

	is_created – Will be set to True if model was created and to False if edited

	
on_model_delete(model)

	Perform some actions before a model is deleted.

Called from delete_model in the same transaction
(if it has any meaning for a store backend).

By default do nothing.

	
render(template, **kwargs)

	Render template

	Parameters

	
	template – Template path to render

	kwargs – Template arguments

	
scaffold_auto_joins()

	Return a list of joined tables by going through the
displayed columns.

	
scaffold_filters(name)

	Return list of enabled filters

	
scaffold_form()

	Create form from the model.

	
scaffold_inline_form_models(form_class)

	Contribute inline models to the form

	Parameters

	form_class – Form class

	
scaffold_list_columns()

	Return a list of columns from the model.

	
scaffold_list_form(widget=None, validators=None)

	Create form for the index_view using only the columns from
self.column_editable_list.

	Parameters

	
	widget – WTForms widget class. Defaults to XEditableWidget.

	validators – form_args dict with only validators
{‘name’: {‘validators’: [required()]}}

	
scaffold_pk()

	Return the primary key name(s) from a model
If model has single primary key, will return a string and tuple otherwise

	
scaffold_sortable_columns()

	Return a dictionary of sortable columns.
Key is column name, value is sort column/field.

	
search_placeholder()

	Return search placeholder.

For example, if set column_labels and column_searchable_list:

	class MyModelView(BaseModelView):

	column_labels = dict(name=’Name’, last_name=’Last Name’)
column_searchable_list = (‘name’, ‘last_name’)

placeholder is: “Search: Name, Last Name”

	
update_model(form, model)

	Update model from form.

	Parameters

	
	form – Form instance

	model – Model instance

	
validate_form(form)

	Validate the form on submit.

	Parameters

	form – Form to validate

flask_admin.contrib.sqla.fields

Useful form fields for use with SQLAlchemy ORM.

	
class QuerySelectField(label=None, validators=None, query_factory=None, get_pk=None, get_label=None, allow_blank=False, blank_text=u'', **kwargs)

	Will display a select drop-down field to choose between ORM results in a
sqlalchemy Query. The data property actually will store/keep an ORM
model instance, not the ID. Submitting a choice which is not in the query
will result in a validation error.

This field only works for queries on models whose primary key column(s)
have a consistent string representation. This means it mostly only works
for those composed of string, unicode, and integer types. For the most
part, the primary keys will be auto-detected from the model, alternately
pass a one-argument callable to get_pk which can return a unique
comparable key.

The query property on the field can be set from within a view to assign
a query per-instance to the field. If the property is not set, the
query_factory callable passed to the field constructor will be called to
obtain a query.

Specify get_label to customize the label associated with each option. If
a string, this is the name of an attribute on the model object to use as
the label text. If a one-argument callable, this callable will be passed
model instance and expected to return the label text. Otherwise, the model
object’s __str__ or __unicode__ will be used.

If allow_blank is set to True, then a blank choice will be added to the
top of the list. Selecting this choice will result in the data property
being None. The label for this blank choice can be set by specifying the
blank_text parameter.

	
class QuerySelectMultipleField(label=None, validators=None, default=None, **kwargs)

	Very similar to QuerySelectField with the difference that this will
display a multiple select. The data property will hold a list with ORM
model instances and will be an empty list when no value is selected.

If any of the items in the data list or submitted form data cannot be
found in the query, this will result in a validation error.

	
class CheckboxListField(label=None, validators=None, default=None, **kwargs)

	Alternative field for many-to-many relationships.

Can be used instead of QuerySelectMultipleField.
Appears as the list of checkboxes.
Example:

class MyView(ModelView):
 form_columns = (
 'languages',
)
 form_args = {
 'languages': {
 'query_factory': Language.query,
 },
 }
 form_overrides = {
 'languages': CheckboxListField,
 }

flask_admin.contrib.mongoengine

MongoEngine model backend implementation.

	
class ModelView(model, name=None, category=None, endpoint=None, url=None, static_folder=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	MongoEngine model scaffolding.

Class inherits configuration options from BaseModelView and they’re not displayed here.

	
column_filters = None

	Collection of the column filters.

Can contain either field names or instances of
flask_admin.contrib.mongoengine.filters.BaseMongoEngineFilter
classes.

Filters will be grouped by name when displayed in the drop-down.

For example:

class MyModelView(BaseModelView):
 column_filters = ('user', 'email')

or:

from flask_admin.contrib.mongoengine.filters import BooleanEqualFilter

class MyModelView(BaseModelView):
 column_filters = (BooleanEqualFilter(column=User.name, name='Name'),)

or:

from flask_admin.contrib.mongoengine.filters import BaseMongoEngineFilter

class FilterLastNameBrown(BaseMongoEngineFilter):
 def apply(self, query, value):
 if value == '1':
 return query.filter(self.column == "Brown")
 else:
 return query.filter(self.column != "Brown")

 def operation(self):
 return 'is Brown'

class MyModelView(BaseModelView):
 column_filters = [
 FilterLastNameBrown(
 column=User.last_name, name='Last Name',
 options=(('1', 'Yes'), ('0', 'No'))
)
]

	
column_type_formatters = {<type 'NoneType'>: <function empty_formatter at 0x7ffb3c3ca500>, <type 'bool'>: <function bool_formatter at 0x7ffb3c3ca578>, <type 'dict'>: <function dict_formatter at 0x7ffb3c3ca6e0>, <type 'list'>: <function list_formatter at 0x7ffb3c3ca5f0>, <enum 'Enum'>: <function enum_formatter at 0x7ffb3c3ca668>, <class 'mongoengine.base.datastructures.BaseList'>: <function list_formatter at 0x7ffb3c3ca5f0>, <class 'mongoengine.fields.ImageGridFsProxy'>: <function grid_image_formatter at 0x7ffb3c379cf8>, <class 'mongoengine.fields.GridFSProxy'>: <function grid_formatter at 0x7ffb3c379c80>}

	Customized type formatters for MongoEngine backend

	
filter_converter = <flask_admin.contrib.mongoengine.filters.FilterConverter object>

	Field to filter converter.

Override this attribute to use a non-default converter.

	
model_form_converter = <class 'flask_admin.contrib.mongoengine.form.CustomModelConverter'>

	Model form conversion class. Use this to implement custom
field conversion logic.

Custom class should be derived from the
flask_admin.contrib.mongoengine.form.CustomModelConverter.

For example:

class MyModelConverter(AdminModelConverter):
 pass

class MyAdminView(ModelView):
 model_form_converter = MyModelConverter

	
allowed_search_types = (<class 'mongoengine.fields.StringField'>, <class 'mongoengine.fields.URLField'>, <class 'mongoengine.fields.EmailField'>)

	List of allowed search field types.

	
form_subdocuments = None

	Subdocument configuration options.

This field accepts dictionary, where key is field name and value is either dictionary or instance of the
flask_admin.contrib.mongoengine.EmbeddedForm.

Consider following example:

class Comment(db.EmbeddedDocument):
 name = db.StringField(max_length=20, required=True)
 value = db.StringField(max_length=20)

class Post(db.Document):
 text = db.StringField(max_length=30)
 data = db.EmbeddedDocumentField(Comment)

class MyAdmin(ModelView):
 form_subdocuments = {
 'data': {
 'form_columns': ('name',)
 }
 }

In this example, Post model has child Comment subdocument. When generating form for Comment embedded
document, Flask-Admin will only create name field.

It is also possible to use class-based embedded document configuration:

class CommentEmbed(EmbeddedForm):
 form_columns = ('name',)

class MyAdmin(ModelView):
 form_subdocuments = {
 'data': CommentEmbed()
 }

Arbitrary depth nesting is supported:

class SomeEmbed(EmbeddedForm):
 form_excluded_columns = ('test',)

class CommentEmbed(EmbeddedForm):
 form_columns = ('name',)
 form_subdocuments = {
 'inner': SomeEmbed()
 }

class MyAdmin(ModelView):
 form_subdocuments = {
 'data': CommentEmbed()
 }

There’s also support for forms embedded into ListField. All you have
to do is to create nested rule with None as a name. Even though it
is slightly confusing, but that’s how Flask-MongoEngine creates
form fields embedded into ListField:

class Comment(db.EmbeddedDocument):
 name = db.StringField(max_length=20, required=True)
 value = db.StringField(max_length=20)

class Post(db.Document):
 text = db.StringField(max_length=30)
 data = db.ListField(db.EmbeddedDocumentField(Comment))

class MyAdmin(ModelView):
 form_subdocuments = {
 'data': {
 'form_subdocuments': {
 None: {
 'form_columns': ('name',)
 }
 }

 }
 }

	
action_form(obj=None)

	Instantiate model action form and return it.

Override to implement custom behavior.

	
action_view(*args, **kwargs)

	Mass-model action view.

	
after_model_change(form, model, is_created)

	Perform some actions after a model was created or updated and
committed to the database.

Called from create_model after successful database commit.

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that was created/updated

	is_created – True if model was created, False if model was updated

	
after_model_delete(model)

	Perform some actions after a model was deleted and
committed to the database.

Called from delete_model after successful database commit
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	model – Model that was deleted

	
ajax_update(*args, **kwargs)

	Edits a single column of a record in list view.

	
allowed_search_types = (<class 'mongoengine.fields.StringField'>, <class 'mongoengine.fields.URLField'>, <class 'mongoengine.fields.EmailField'>)

	List of allowed search field types.

	
create_blueprint(admin)

	Create Flask blueprint.

	
create_form(obj=None)

	Instantiate model creation form and return it.

Override to implement custom behavior.

	
create_model(form)

	Create model helper

	Parameters

	form – Form instance

	
create_view(*args, **kwargs)

	Create model view

	
delete_form()

	Instantiate model delete form and return it.

Override to implement custom behavior.

The delete form originally used a GET request, so delete_form
accepts both GET and POST request for backwards compatibility.

	
delete_model(model)

	Delete model helper

	Parameters

	model – Model instance

	
delete_view(*args, **kwargs)

	Delete model view. Only POST method is allowed.

	
details_view(*args, **kwargs)

	Details model view

	
edit_form(obj=None)

	Instantiate model editing form and return it.

Override to implement custom behavior.

	
edit_view(*args, **kwargs)

	Edit model view

	
form_base_class

	alias of flask_admin.form.BaseForm

	
get_action_form()

	Create form class for a model action.

Override to implement customized behavior.

	
get_actions_list()

	Return a list and a dictionary of allowed actions.

	
get_column_name(field)

	Return a human-readable column name.

	Parameters

	field – Model field name.

	
get_column_names(only_columns, excluded_columns)

	Returns a list of tuples with the model field name and formatted
field name.

	Parameters

	
	only_columns – List of columns to include in the results. If not set,
scaffold_list_columns will generate the list from the model.

	excluded_columns – List of columns to exclude from the results if only_columns
is not set.

	
get_create_form()

	Create form class for model creation view.

Override to implement customized behavior.

	
get_delete_form()

	Create form class for model delete view.

Override to implement customized behavior.

	
get_detail_value(context, model, name)

	Returns the value to be displayed in the detail view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_details_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_details_list
and not in column_details_exclude_list. If column_details_list
is not set, the columns from scaffold_list_columns will be used.

	
get_edit_form()

	Create form class for model editing view.

Override to implement customized behavior.

	
get_export_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_export_list
and not in column_export_exclude_list. If column_export_list is
not set, it will attempt to use the columns from column_list
or finally the columns from scaffold_list_columns will be used.

	
get_export_name(export_type='csv')

	
	Returns

	The exported csv file name.

	
get_export_value(model, name)

	Returns the value to be displayed in export.
Allows export to use different (non HTML) formatters.

	Parameters

	
	model – Model instance

	name – Field name

	
get_filter_arg(index, flt)

	Given a filter flt, return a unique name for that filter in
this view.

Does not include the flt[n]_ portion of the filter name.

	Parameters

	
	index – Filter index in _filters array

	flt – Filter instance

	
get_filters()

	Return a list of filter objects.

If your model backend implementation does not support filters,
override this method and return None.

	
get_form()

	Get form class.

If self.form is set, will return it and will call
self.scaffold_form otherwise.

Override to implement customized behavior.

	
get_list(page, sort_column, sort_desc, search, filters, execute=True, page_size=None)

	Get list of objects from MongoEngine

	Parameters

	
	page – Page number

	sort_column – Sort column

	sort_desc – Sort descending

	search – Search criteria

	filters – List of applied filters

	execute – Run query immediately or not

	page_size – Number of results. Defaults to ModelView’s page_size. Can be
overriden to change the page_size limit. Removing the page_size
limit requires setting page_size to 0 or False.

	
get_list_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_list
and not in column_exclude_list. If column_list is not set,
the columns from scaffold_list_columns will be used.

	
get_list_form()

	Get form class for the editable list view.

Uses only validators from form_args to build the form class.

Allows overriding the editable list view field/widget. For example:

from flask_admin.model.widgets import XEditableWidget

class CustomWidget(XEditableWidget):
 def get_kwargs(self, subfield, kwargs):
 if subfield.type == 'TextAreaField':
 kwargs['data-type'] = 'textarea'
 kwargs['data-rows'] = '20'
 # elif: kwargs for other fields

 return kwargs

class MyModelView(BaseModelView):
 def get_list_form(self):
 return self.scaffold_list_form(widget=CustomWidget)

	
get_list_row_actions()

	Return list of row action objects, each is instance of
BaseListRowAction

	
get_list_value(context, model, name)

	Returns the value to be displayed in the list view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_one(id)

	Return a single model instance by its ID

	Parameters

	id – Model ID

	
get_pk_value(model)

	Return the primary key value from the model instance

	Parameters

	model – Model instance

	
get_query()

	Returns the QuerySet for this view. By default, it returns all the
objects for the current model.

	
get_save_return_url(model, is_created=False)

	Return url where user is redirected after successful form save.

	Parameters

	
	model – Saved object

	is_created – Whether new object was created or existing one was updated

For example, redirect use to object details view after form save:

class MyModelView(ModelView):
 can_view_details = True

 def get_save_return_url(self, model, is_created):
 return self.get_url('.details_view', id=model.id)

	
get_sortable_columns()

	Returns a dictionary of the sortable columns. Key is a model
field name and value is sort column (for example - attribute).

If column_sortable_list is set, will use it. Otherwise, will call
scaffold_sortable_columns to get them from the model.

	
get_url(endpoint, **kwargs)

	Generate URL for the endpoint. If you want to customize URL generation
logic (persist some query string argument, for example), this is
right place to do it.

	Parameters

	
	endpoint – Flask endpoint name

	kwargs – Arguments for url_for

	
handle_action(return_view=None)

	Handle action request.

	Parameters

	return_view – Name of the view to return to after the request.
If not provided, will return user to the return url in the form
or the list view.

	
handle_filter(filter)

	Postprocess (add joins, etc) for a filter.

	Parameters

	filter – Filter object to postprocess

	
inaccessible_callback(name, **kwargs)

	Handle the response to inaccessible views.

By default, it throw HTTP 403 error. Override this method to
customize the behaviour.

	
index_view(*args, **kwargs)

	List view

	
init_actions()

	Initialize list of actions for the current administrative view.

	
init_search()

	Init search

	
is_accessible()

	Override this method to add permission checks.

Flask-Admin does not make any assumptions about the authentication system used in your application, so it is
up to you to implement it.

By default, it will allow access for everyone.

	
is_action_allowed(name)

	Override this method to allow or disallow actions based
on some condition.

The default implementation only checks if the particular action
is not in action_disallowed_list.

	
is_editable(name)

	Verify if column is editable.

	Parameters

	name – Column name.

	
is_sortable(name)

	Verify if column is sortable.

Not case-sensitive.

	Parameters

	name – Column name.

	
is_valid_filter(filter)

	Validate if the provided filter is a valid MongoEngine filter

	Parameters

	filter – Filter object

	
is_visible()

	Override this method if you want dynamically hide or show administrative views
from Flask-Admin menu structure

By default, item is visible in menu.

Please note that item should be both visible and accessible to be displayed in menu.

	
list_form(obj=None)

	Instantiate model editing form for list view and return it.

Override to implement custom behavior.

	
model_form_converter

	alias of flask_admin.contrib.mongoengine.form.CustomModelConverter

	
object_id_converter

	alias of bson.objectid.ObjectId

	
on_form_prefill(form, id)

	Perform additional actions to pre-fill the edit form.

Called from edit_view, if the current action is rendering
the form rather than receiving client side input, after
default pre-filling has been performed.

By default does nothing.

You only need to override this if you have added custom
fields that depend on the database contents in a way that
Flask-admin can’t figure out by itself. Fields that were
added by name of a normal column or relationship should
work out of the box.

	Parameters

	
	form – Form instance

	id – id of the object that is going to be edited

	
on_model_change(form, model, is_created)

	Perform some actions before a model is created or updated.

Called from create_model and update_model in the same transaction
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that will be created/updated

	is_created – Will be set to True if model was created and to False if edited

	
on_model_delete(model)

	Perform some actions before a model is deleted.

Called from delete_model in the same transaction
(if it has any meaning for a store backend).

By default do nothing.

	
render(template, **kwargs)

	Render template

	Parameters

	
	template – Template path to render

	kwargs – Template arguments

	
scaffold_filters(name)

	Return filter object(s) for the field

	Parameters

	name – Either field name or field instance

	
scaffold_form()

	Create form from the model.

	
scaffold_list_columns()

	Scaffold list columns

	
scaffold_list_form(widget=None, validators=None)

	Create form for the index_view using only the columns from
self.column_editable_list.

	Parameters

	
	widget – WTForms widget class. Defaults to XEditableWidget.

	validators – form_args dict with only validators
{‘name’: {‘validators’: [required()]}}

	
scaffold_sortable_columns()

	Return a dictionary of sortable columns (name, field)

	
search_placeholder()

	Return search placeholder.

	
update_model(form, model)

	Update model helper

	Parameters

	
	form – Form instance

	model – Model instance to update

	
validate_form(form)

	Validate the form on submit.

	Parameters

	form – Form to validate

flask_admin.contrib.mongoengine.fields

	
class ModelFormField(model, view, form_class, form_opts=None, **kwargs)

	Customized ModelFormField for MongoEngine EmbeddedDocuments.

	
class MongoFileField(label=None, validators=None, **kwargs)

	GridFS file field.

	
class MongoImageField(label=None, validators=None, **kwargs)

	GridFS image field.

flask_admin.contrib.peewee

Peewee model backend implementation.

	
class ModelView(model, name=None, category=None, endpoint=None, url=None, static_folder=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	Class inherits configuration options from BaseModelView and they’re not displayed here.

	
column_filters = None

	Collection of the column filters.

Can contain either field names or instances of
flask_admin.contrib.peewee.filters.BasePeeweeFilter classes.

Filters will be grouped by name when displayed in the drop-down.

For example:

class MyModelView(BaseModelView):
 column_filters = ('user', 'email')

or:

from flask_admin.contrib.peewee.filters import BooleanEqualFilter

class MyModelView(BaseModelView):
 column_filters = (BooleanEqualFilter(column=User.name, name='Name'),)

or:

from flask_admin.contrib.peewee.filters import BasePeeweeFilter

class FilterLastNameBrown(BasePeeweeFilter):
 def apply(self, query, value):
 if value == '1':
 return query.filter(self.column == "Brown")
 else:
 return query.filter(self.column != "Brown")

 def operation(self):
 return 'is Brown'

class MyModelView(BaseModelView):
 column_filters = [
 FilterLastNameBrown(
 column=User.last_name, name='Last Name',
 options=(('1', 'Yes'), ('0', 'No'))
)
]

	
filter_converter = <flask_admin.contrib.peewee.filters.FilterConverter object>

	Field to filter converter.

Override this attribute to use non-default converter.

	
model_form_converter = <class 'flask_admin.contrib.peewee.form.CustomModelConverter'>

	Model form conversion class. Use this to implement custom field conversion logic.

For example:

class MyModelConverter(AdminModelConverter):
 pass

class MyAdminView(ModelView):
 model_form_converter = MyModelConverter

	
inline_model_form_converter = <class 'flask_admin.contrib.peewee.form.InlineModelConverter'>

	Inline model conversion class. If you need some kind of post-processing for inline
forms, you can customize behavior by doing something like this:

class MyInlineModelConverter(AdminModelConverter):
 def post_process(self, form_class, info):
 form_class.value = TextField('value')
 return form_class

class MyAdminView(ModelView):
 inline_model_form_converter = MyInlineModelConverter

	
fast_mass_delete = False

	If set to False and user deletes more than one model using actions,
all models will be read from the database and then deleted one by one
giving Peewee chance to manually cleanup any dependencies (many-to-many
relationships, etc).

If set to True, will run DELETE statement which is somewhat faster, but
might leave corrupted data if you forget to configure DELETE CASCADE
for your model.

	
inline_models = None

	Inline related-model editing for models with parent to child relation.

Accept enumerable with one of the values:

	Child model class:

class MyModelView(ModelView):
 inline_models = (Post,)

	Child model class and additional options:

class MyModelView(ModelView):
 inline_models = [(Post, dict(form_columns=['title']))]

	Django-like InlineFormAdmin class instance:

from flask_admin.model.form import InlineFormAdmin

class MyInlineModelForm(InlineFormAdmin):
 form_columns = ('title', 'date')

class MyModelView(ModelView):
 inline_models = (MyInlineModelForm(MyInlineModel),)

You can customize generated field name by:

	Using form_name property as option:

	class MyModelView(ModelView):

	inline_models = ((Post, dict(form_label=’Hello’)))

	Using field’s related_name:

	class Model1(Base):

	# …
pass

	class Model2(Base):

	# …
model1 = ForeignKeyField(related_name=”model_twos”)

	class MyModel1View(Base):

	inline_models = (Model2,)
column_labels = {‘model_ones’: ‘Hello’}

	
action_form(obj=None)

	Instantiate model action form and return it.

Override to implement custom behavior.

	
action_view(*args, **kwargs)

	Mass-model action view.

	
after_model_change(form, model, is_created)

	Perform some actions after a model was created or updated and
committed to the database.

Called from create_model after successful database commit.

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that was created/updated

	is_created – True if model was created, False if model was updated

	
after_model_delete(model)

	Perform some actions after a model was deleted and
committed to the database.

Called from delete_model after successful database commit
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	model – Model that was deleted

	
ajax_update(*args, **kwargs)

	Edits a single column of a record in list view.

	
create_blueprint(admin)

	Create Flask blueprint.

	
create_form(obj=None)

	Instantiate model creation form and return it.

Override to implement custom behavior.

	
create_model(form)

	Create model from the form.

Returns the model instance if operation succeeded.

Must be implemented in the child class.

	Parameters

	form – Form instance

	
create_view(*args, **kwargs)

	Create model view

	
delete_form()

	Instantiate model delete form and return it.

Override to implement custom behavior.

The delete form originally used a GET request, so delete_form
accepts both GET and POST request for backwards compatibility.

	
delete_model(model)

	Delete model.

Returns True if operation succeeded.

Must be implemented in the child class.

	Parameters

	model – Model instance

	
delete_view(*args, **kwargs)

	Delete model view. Only POST method is allowed.

	
details_view(*args, **kwargs)

	Details model view

	
edit_form(obj=None)

	Instantiate model editing form and return it.

Override to implement custom behavior.

	
edit_view(*args, **kwargs)

	Edit model view

	
form_base_class

	alias of flask_admin.form.BaseForm

	
get_action_form()

	Create form class for a model action.

Override to implement customized behavior.

	
get_actions_list()

	Return a list and a dictionary of allowed actions.

	
get_column_name(field)

	Return a human-readable column name.

	Parameters

	field – Model field name.

	
get_column_names(only_columns, excluded_columns)

	Returns a list of tuples with the model field name and formatted
field name.

	Parameters

	
	only_columns – List of columns to include in the results. If not set,
scaffold_list_columns will generate the list from the model.

	excluded_columns – List of columns to exclude from the results if only_columns
is not set.

	
get_create_form()

	Create form class for model creation view.

Override to implement customized behavior.

	
get_delete_form()

	Create form class for model delete view.

Override to implement customized behavior.

	
get_detail_value(context, model, name)

	Returns the value to be displayed in the detail view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_details_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_details_list
and not in column_details_exclude_list. If column_details_list
is not set, the columns from scaffold_list_columns will be used.

	
get_edit_form()

	Create form class for model editing view.

Override to implement customized behavior.

	
get_export_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_export_list
and not in column_export_exclude_list. If column_export_list is
not set, it will attempt to use the columns from column_list
or finally the columns from scaffold_list_columns will be used.

	
get_export_name(export_type='csv')

	
	Returns

	The exported csv file name.

	
get_export_value(model, name)

	Returns the value to be displayed in export.
Allows export to use different (non HTML) formatters.

	Parameters

	
	model – Model instance

	name – Field name

	
get_filter_arg(index, flt)

	Given a filter flt, return a unique name for that filter in
this view.

Does not include the flt[n]_ portion of the filter name.

	Parameters

	
	index – Filter index in _filters array

	flt – Filter instance

	
get_filters()

	Return a list of filter objects.

If your model backend implementation does not support filters,
override this method and return None.

	
get_form()

	Get form class.

If self.form is set, will return it and will call
self.scaffold_form otherwise.

Override to implement customized behavior.

	
get_list(page, sort_column, sort_desc, search, filters, execute=True, page_size=None)

	Return records from the database.

	Parameters

	
	page – Page number

	sort_column – Sort column name

	sort_desc – Descending or ascending sort

	search – Search query

	filters – List of filter tuples

	execute – Execute query immediately? Default is True

	page_size – Number of results. Defaults to ModelView’s page_size. Can be
overriden to change the page_size limit. Removing the page_size
limit requires setting page_size to 0 or False.

	
get_list_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_list
and not in column_exclude_list. If column_list is not set,
the columns from scaffold_list_columns will be used.

	
get_list_form()

	Get form class for the editable list view.

Uses only validators from form_args to build the form class.

Allows overriding the editable list view field/widget. For example:

from flask_admin.model.widgets import XEditableWidget

class CustomWidget(XEditableWidget):
 def get_kwargs(self, subfield, kwargs):
 if subfield.type == 'TextAreaField':
 kwargs['data-type'] = 'textarea'
 kwargs['data-rows'] = '20'
 # elif: kwargs for other fields

 return kwargs

class MyModelView(BaseModelView):
 def get_list_form(self):
 return self.scaffold_list_form(widget=CustomWidget)

	
get_list_row_actions()

	Return list of row action objects, each is instance of
BaseListRowAction

	
get_list_value(context, model, name)

	Returns the value to be displayed in the list view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_one(id)

	Return one model by its id.

Must be implemented in the child class.

	Parameters

	id – Model id

	
get_pk_value(model)

	Return PK value from a model object.

	
get_save_return_url(model, is_created=False)

	Return url where user is redirected after successful form save.

	Parameters

	
	model – Saved object

	is_created – Whether new object was created or existing one was updated

For example, redirect use to object details view after form save:

class MyModelView(ModelView):
 can_view_details = True

 def get_save_return_url(self, model, is_created):
 return self.get_url('.details_view', id=model.id)

	
get_sortable_columns()

	Returns a dictionary of the sortable columns. Key is a model
field name and value is sort column (for example - attribute).

If column_sortable_list is set, will use it. Otherwise, will call
scaffold_sortable_columns to get them from the model.

	
get_url(endpoint, **kwargs)

	Generate URL for the endpoint. If you want to customize URL generation
logic (persist some query string argument, for example), this is
right place to do it.

	Parameters

	
	endpoint – Flask endpoint name

	kwargs – Arguments for url_for

	
handle_action(return_view=None)

	Handle action request.

	Parameters

	return_view – Name of the view to return to after the request.
If not provided, will return user to the return url in the form
or the list view.

	
handle_filter(filter)

	Postprocess (add joins, etc) for a filter.

	Parameters

	filter – Filter object to postprocess

	
inaccessible_callback(name, **kwargs)

	Handle the response to inaccessible views.

By default, it throw HTTP 403 error. Override this method to
customize the behaviour.

	
index_view(*args, **kwargs)

	List view

	
init_actions()

	Initialize list of actions for the current administrative view.

	
init_search()

	Initialize search. If data provider does not support search,
init_search will return False.

	
is_accessible()

	Override this method to add permission checks.

Flask-Admin does not make any assumptions about the authentication system used in your application, so it is
up to you to implement it.

By default, it will allow access for everyone.

	
is_action_allowed(name)

	Override this method to allow or disallow actions based
on some condition.

The default implementation only checks if the particular action
is not in action_disallowed_list.

	
is_editable(name)

	Verify if column is editable.

	Parameters

	name – Column name.

	
is_sortable(name)

	Verify if column is sortable.

Not case-sensitive.

	Parameters

	name – Column name.

	
is_valid_filter(filter)

	Verify that the provided filter object is valid.

Override in model backend implementation to verify if
the provided filter type is allowed.

	Parameters

	filter – Filter object to verify.

	
is_visible()

	Override this method if you want dynamically hide or show administrative views
from Flask-Admin menu structure

By default, item is visible in menu.

Please note that item should be both visible and accessible to be displayed in menu.

	
list_form(obj=None)

	Instantiate model editing form for list view and return it.

Override to implement custom behavior.

	
on_form_prefill(form, id)

	Perform additional actions to pre-fill the edit form.

Called from edit_view, if the current action is rendering
the form rather than receiving client side input, after
default pre-filling has been performed.

By default does nothing.

You only need to override this if you have added custom
fields that depend on the database contents in a way that
Flask-admin can’t figure out by itself. Fields that were
added by name of a normal column or relationship should
work out of the box.

	Parameters

	
	form – Form instance

	id – id of the object that is going to be edited

	
on_model_change(form, model, is_created)

	Perform some actions before a model is created or updated.

Called from create_model and update_model in the same transaction
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that will be created/updated

	is_created – Will be set to True if model was created and to False if edited

	
on_model_delete(model)

	Perform some actions before a model is deleted.

Called from delete_model in the same transaction
(if it has any meaning for a store backend).

By default do nothing.

	
render(template, **kwargs)

	Render template

	Parameters

	
	template – Template path to render

	kwargs – Template arguments

	
scaffold_filters(name)

	Generate filter object for the given name

	Parameters

	name – Name of the field

	
scaffold_form()

	Create form.BaseForm inherited class from the model. Must be
implemented in the child class.

	
scaffold_list_columns()

	Return list of the model field names. Must be implemented in
the child class.

Expected return format is list of tuples with field name and
display text. For example:

['name', 'first_name', 'last_name']

	
scaffold_list_form(widget=None, validators=None)

	Create form for the index_view using only the columns from
self.column_editable_list.

	Parameters

	
	widget – WTForms widget class. Defaults to XEditableWidget.

	validators – form_args dict with only validators
{‘name’: {‘validators’: [required()]}}

	
scaffold_sortable_columns()

	Returns dictionary of sortable columns. Must be implemented in
the child class.

Expected return format is a dictionary, where keys are field names and
values are property names.

	
search_placeholder()

	Return search placeholder.

	
update_model(form, model)

	Update model from the form.

Returns True if operation succeeded.

Must be implemented in the child class.

	Parameters

	
	form – Form instance

	model – Model instance

	
validate_form(form)

	Validate the form on submit.

	Parameters

	form – Form to validate

flask_admin.contrib.pymongo

PyMongo model backend implementation.

	
class ModelView(coll, name=None, category=None, endpoint=None, url=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None)

	MongoEngine model scaffolding.

Class inherits configuration options from BaseModelView and they’re not displayed here.

	
column_filters = None

	Collection of the column filters.

Should contain instances of
flask_admin.contrib.pymongo.filters.BasePyMongoFilter classes.

Filters will be grouped by name when displayed in the drop-down.

For example:

from flask_admin.contrib.pymongo.filters import BooleanEqualFilter

class MyModelView(BaseModelView):
 column_filters = (BooleanEqualFilter(column=User.name, name='Name'),)

or:

from flask_admin.contrib.pymongo.filters import BasePyMongoFilter

class FilterLastNameBrown(BasePyMongoFilter):
 def apply(self, query, value):
 if value == '1':
 return query.filter(self.column == "Brown")
 else:
 return query.filter(self.column != "Brown")

 def operation(self):
 return 'is Brown'

class MyModelView(BaseModelView):
 column_filters = [
 FilterLastNameBrown(
 column=User.last_name, name='Last Name',
 options=(('1', 'Yes'), ('0', 'No'))
)
]

	
action_form(obj=None)

	Instantiate model action form and return it.

Override to implement custom behavior.

	
action_view(*args, **kwargs)

	Mass-model action view.

	
after_model_change(form, model, is_created)

	Perform some actions after a model was created or updated and
committed to the database.

Called from create_model after successful database commit.

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that was created/updated

	is_created – True if model was created, False if model was updated

	
after_model_delete(model)

	Perform some actions after a model was deleted and
committed to the database.

Called from delete_model after successful database commit
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	model – Model that was deleted

	
ajax_update(*args, **kwargs)

	Edits a single column of a record in list view.

	
create_blueprint(admin)

	Create Flask blueprint.

	
create_form(obj=None)

	Instantiate model creation form and return it.

Override to implement custom behavior.

	
create_model(form)

	Create model helper

	Parameters

	form – Form instance

	
create_view(*args, **kwargs)

	Create model view

	
delete_form()

	Instantiate model delete form and return it.

Override to implement custom behavior.

The delete form originally used a GET request, so delete_form
accepts both GET and POST request for backwards compatibility.

	
delete_model(model)

	Delete model helper

	Parameters

	model – Model instance

	
delete_view(*args, **kwargs)

	Delete model view. Only POST method is allowed.

	
details_view(*args, **kwargs)

	Details model view

	
edit_form(obj)

	Create edit form from the MongoDB document

	
edit_view(*args, **kwargs)

	Edit model view

	
form_base_class

	alias of flask_admin.form.BaseForm

	
get_action_form()

	Create form class for a model action.

Override to implement customized behavior.

	
get_actions_list()

	Return a list and a dictionary of allowed actions.

	
get_column_name(field)

	Return a human-readable column name.

	Parameters

	field – Model field name.

	
get_column_names(only_columns, excluded_columns)

	Returns a list of tuples with the model field name and formatted
field name.

	Parameters

	
	only_columns – List of columns to include in the results. If not set,
scaffold_list_columns will generate the list from the model.

	excluded_columns – List of columns to exclude from the results if only_columns
is not set.

	
get_create_form()

	Create form class for model creation view.

Override to implement customized behavior.

	
get_delete_form()

	Create form class for model delete view.

Override to implement customized behavior.

	
get_detail_value(context, model, name)

	Returns the value to be displayed in the detail view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_details_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_details_list
and not in column_details_exclude_list. If column_details_list
is not set, the columns from scaffold_list_columns will be used.

	
get_edit_form()

	Create form class for model editing view.

Override to implement customized behavior.

	
get_export_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_export_list
and not in column_export_exclude_list. If column_export_list is
not set, it will attempt to use the columns from column_list
or finally the columns from scaffold_list_columns will be used.

	
get_export_name(export_type='csv')

	
	Returns

	The exported csv file name.

	
get_export_value(model, name)

	Returns the value to be displayed in export.
Allows export to use different (non HTML) formatters.

	Parameters

	
	model – Model instance

	name – Field name

	
get_filter_arg(index, flt)

	Given a filter flt, return a unique name for that filter in
this view.

Does not include the flt[n]_ portion of the filter name.

	Parameters

	
	index – Filter index in _filters array

	flt – Filter instance

	
get_filters()

	Return a list of filter objects.

If your model backend implementation does not support filters,
override this method and return None.

	
get_form()

	Get form class.

If self.form is set, will return it and will call
self.scaffold_form otherwise.

Override to implement customized behavior.

	
get_list(page, sort_column, sort_desc, search, filters, execute=True, page_size=None)

	Get list of objects from MongoEngine

	Parameters

	
	page – Page number

	sort_column – Sort column

	sort_desc – Sort descending

	search – Search criteria

	filters – List of applied fiters

	execute – Run query immediately or not

	page_size – Number of results. Defaults to ModelView’s page_size. Can be
overriden to change the page_size limit. Removing the page_size
limit requires setting page_size to 0 or False.

	
get_list_columns()

	Uses get_column_names to get a list of tuples with the model
field name and formatted name for the columns in column_list
and not in column_exclude_list. If column_list is not set,
the columns from scaffold_list_columns will be used.

	
get_list_form()

	Get form class for the editable list view.

Uses only validators from form_args to build the form class.

Allows overriding the editable list view field/widget. For example:

from flask_admin.model.widgets import XEditableWidget

class CustomWidget(XEditableWidget):
 def get_kwargs(self, subfield, kwargs):
 if subfield.type == 'TextAreaField':
 kwargs['data-type'] = 'textarea'
 kwargs['data-rows'] = '20'
 # elif: kwargs for other fields

 return kwargs

class MyModelView(BaseModelView):
 def get_list_form(self):
 return self.scaffold_list_form(widget=CustomWidget)

	
get_list_row_actions()

	Return list of row action objects, each is instance of
BaseListRowAction

	
get_list_value(context, model, name)

	Returns the value to be displayed in the list view

	Parameters

	
	context – jinja2.runtime.Context

	model – Model instance

	name – Field name

	
get_one(id)

	Return single model instance by ID

	Parameters

	id – Model ID

	
get_pk_value(model)

	Return primary key value from the model instance

	Parameters

	model – Model instance

	
get_save_return_url(model, is_created=False)

	Return url where user is redirected after successful form save.

	Parameters

	
	model – Saved object

	is_created – Whether new object was created or existing one was updated

For example, redirect use to object details view after form save:

class MyModelView(ModelView):
 can_view_details = True

 def get_save_return_url(self, model, is_created):
 return self.get_url('.details_view', id=model.id)

	
get_sortable_columns()

	Returns a dictionary of the sortable columns. Key is a model
field name and value is sort column (for example - attribute).

If column_sortable_list is set, will use it. Otherwise, will call
scaffold_sortable_columns to get them from the model.

	
get_url(endpoint, **kwargs)

	Generate URL for the endpoint. If you want to customize URL generation
logic (persist some query string argument, for example), this is
right place to do it.

	Parameters

	
	endpoint – Flask endpoint name

	kwargs – Arguments for url_for

	
handle_action(return_view=None)

	Handle action request.

	Parameters

	return_view – Name of the view to return to after the request.
If not provided, will return user to the return url in the form
or the list view.

	
handle_filter(filter)

	Postprocess (add joins, etc) for a filter.

	Parameters

	filter – Filter object to postprocess

	
inaccessible_callback(name, **kwargs)

	Handle the response to inaccessible views.

By default, it throw HTTP 403 error. Override this method to
customize the behaviour.

	
index_view(*args, **kwargs)

	List view

	
init_actions()

	Initialize list of actions for the current administrative view.

	
init_search()

	Init search

	
is_accessible()

	Override this method to add permission checks.

Flask-Admin does not make any assumptions about the authentication system used in your application, so it is
up to you to implement it.

By default, it will allow access for everyone.

	
is_action_allowed(name)

	Override this method to allow or disallow actions based
on some condition.

The default implementation only checks if the particular action
is not in action_disallowed_list.

	
is_editable(name)

	Verify if column is editable.

	Parameters

	name – Column name.

	
is_sortable(name)

	Verify if column is sortable.

Not case-sensitive.

	Parameters

	name – Column name.

	
is_valid_filter(filter)

	Validate if it is valid MongoEngine filter

	Parameters

	filter – Filter object

	
is_visible()

	Override this method if you want dynamically hide or show administrative views
from Flask-Admin menu structure

By default, item is visible in menu.

Please note that item should be both visible and accessible to be displayed in menu.

	
list_form(obj=None)

	Instantiate model editing form for list view and return it.

Override to implement custom behavior.

	
on_form_prefill(form, id)

	Perform additional actions to pre-fill the edit form.

Called from edit_view, if the current action is rendering
the form rather than receiving client side input, after
default pre-filling has been performed.

By default does nothing.

You only need to override this if you have added custom
fields that depend on the database contents in a way that
Flask-admin can’t figure out by itself. Fields that were
added by name of a normal column or relationship should
work out of the box.

	Parameters

	
	form – Form instance

	id – id of the object that is going to be edited

	
on_model_change(form, model, is_created)

	Perform some actions before a model is created or updated.

Called from create_model and update_model in the same transaction
(if it has any meaning for a store backend).

By default does nothing.

	Parameters

	
	form – Form used to create/update model

	model – Model that will be created/updated

	is_created – Will be set to True if model was created and to False if edited

	
on_model_delete(model)

	Perform some actions before a model is deleted.

Called from delete_model in the same transaction
(if it has any meaning for a store backend).

By default do nothing.

	
render(template, **kwargs)

	Render template

	Parameters

	
	template – Template path to render

	kwargs – Template arguments

	
scaffold_filters(attr)

	Return filter object(s) for the field

	Parameters

	name – Either field name or field instance

	
scaffold_form()

	Create form.BaseForm inherited class from the model. Must be
implemented in the child class.

	
scaffold_list_columns()

	Scaffold list columns

	
scaffold_list_form(widget=None, validators=None)

	Create form for the index_view using only the columns from
self.column_editable_list.

	Parameters

	
	widget – WTForms widget class. Defaults to XEditableWidget.

	validators – form_args dict with only validators
{‘name’: {‘validators’: [DataRequired()]}}

Must be implemented in the child class.

	
scaffold_sortable_columns()

	Return sortable columns dictionary (name, field)

	
search_placeholder()

	Return search placeholder.

	
update_model(form, model)

	Update model helper

	Parameters

	
	form – Form instance

	model – Model instance to update

	
validate_form(form)

	Validate the form on submit.

	Parameters

	form – Form to validate

flask_admin.contrib.fileadmin

	
class FileAdmin(base_path, *args, **kwargs)

	Simple file-management interface.

	Parameters

	
	base_path – Path to the directory which will be managed

	base_url – Optional base URL for the directory. Will be used to generate
static links to the files. If not defined, a route will be created
to serve uploaded files.

Sample usage:

import os.path as op

from flask_admin import Admin
from flask_admin.contrib.fileadmin import FileAdmin

admin = Admin()

path = op.join(op.dirname(__file__), 'static')
admin.add_view(FileAdmin(path, '/static/', name='Static Files'))

	
can_upload = True

	

	
can_delete = True

	

	
can_delete_dirs = True

	

	
can_mkdir = True

	

	
can_rename = True

	

	
allowed_extensions = None

	

	
editable_extensions = ()

	

	
list_template = 'admin/file/list.html'

	

	
upload_template = 'admin/file/form.html'

	

	
mkdir_template = 'admin/file/form.html'

	

	
rename_template = 'admin/file/form.html'

	

	
edit_template = 'admin/file/form.html'

	

	
delete(*args, **kwargs)

	Delete view method

	
download(*args, **kwargs)

	Download view method.

	Parameters

	path – File path.

	
edit(*args, **kwargs)

	Edit view method

	
index_view(*args, **kwargs)

	Index view method

	Parameters

	path – Optional directory path. If not provided, will use the base directory

	
mkdir(*args, **kwargs)

	Directory creation view method

	Parameters

	path – Optional directory path. If not provided, will use the base directory

	
rename(*args, **kwargs)

	Rename view method

	
upload(*args, **kwargs)

	Upload view method

	Parameters

	path – Optional directory path. If not provided, will use the base directory

flask_admin.model.template

	
macro(name)

	Jinja2 macro list column formatter.

	Parameters

	name – Macro name in the current template

Changelog

1.5.3

	Fixed XSS vulnerability

	Support nested categories in the navbar menu

	
	SQLAlchemy

	
	sort on multiple columns with column_default_sort

	sort on related models in column_sortable_list

	fix: inline model forms can now also be used for models with multiple primary keys

	support for using mapped column_property

	Upgrade Leaflet and Leaflet.draw plugins, used for geoalchemy integration

	Specify minimum_input_length for ajax widget

	Peewee: support composite keys

	MongoEngine: when searching/filtering the input is now regarded as case-insensitive by default

	
	FileAdmin

	
	handle special characters in filename

	fix a bug with listing directories on Windows

	avoid raising an exception when unknown sort parameter is encountered

	WTForms 3 support

1.5.2

	Fixed XSS vulnerability

	Fixed Peewee support

	Added detail view column formatters

	Updated Flask-Login example to work with the newer version of the library

	Various SQLAlchemy-related fixes

	Various Windows related fixes for the file admin

1.5.1

	Dropped Python 2.6 support

	Fixed SQLAlchemy >= 1.2 compatibility

	Fixed Pewee 3.0 compatibility

	Fixed max year for a combo date inline editor

	Lots of small bug fixes

1.5.0

	Fixed CSRF generation logic for multi-process deployments

	Added WTForms >= 3.0 support

	Flask-Admin would not recursively save inline models, allowing arbitrary nesting

	Added configuration properties that allow injection of additional CSS and JS dependencies into templates without overriding them

	SQLAlchemy backend
- Updated hybrid property detection using new SQLAlchemy APIs
- Added support for association proxies
- Added support for remote hybrid properties filters
- Added support for ARRAY column type

	Localization-related fixes

	MongoEngine backend is now properly formats model labels

	Improved Google App Engine support:
- Added TextProperty, KeyProperty and SelectField support
- Added support for form_args, excluded_columns, page_size and after_model_update

	Fixed URL generation with localized named filters

	FileAdmin has Bootstrap 2 support now

	Geoalchemy fixes
- Use Google Places (by default) for place search

	Updated translations

	Bug fixes

1.4.2

	Small bug fix release. Fixes regression that prevented usage of “virtual” columns with a custom formatter.

1.4.1

	Official Python 3.5 support

	Customizable row actions

	Tablib support (exporting to XLS, XLSX, CSV, etc)

	Updated external dependencies (jQuery, x-editable, etc)

	Added settings that allows exceptions to be raised on view errors

	Bug fixes

1.4.0

	Updated and reworked documentation

	FileAdmin went through minor refactoring and now supports remote file systems. Comes with the new, optional, AWS S3 file management interface

	Configurable CSV export for model views

	Added overridable URL generation logic. Allows using custom URLs with parameters for administrative views

	Added column_display_actions to ModelView control visibility of the action column without overriding the template

	Added support for the latest MongoEngine

	New SecureForm base class for easier CSRF validation

	Lots of translation-related fixes and updated translations

	Bug fixes

1.3.0

	New feature: Edit models in the list view in a popup

	New feature: Read-only model details view

	Fixed XSS in column_editable_list values

	Improved navigation consistency in model create and edit views

	Ability to choose page size in model list view

	Updated client-side dependencies (jQuery, Select2, etc)

	Updated documentation and examples

	Updated translations

	Bug fixes

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flask_admin	

 	
 	
 flask_admin.actions	

 	
 	
 flask_admin.base	

 	
 	
 flask_admin.contrib.fileadmin	

 	
 	
 flask_admin.contrib.mongoengine	

 	
 	
 flask_admin.contrib.mongoengine.fields	

 	
 	
 flask_admin.contrib.peewee	

 	
 	
 flask_admin.contrib.pymongo	

 	
 	
 flask_admin.contrib.sqla	

 	
 	
 flask_admin.contrib.sqla.fields	

 	
 	
 flask_admin.form	

 	
 	
 flask_admin.form.fields	

 	
 	
 flask_admin.form.rules	

 	
 	
 flask_admin.form.upload	

 	
 	
 flask_admin.helpers	

 	
 	
 flask_admin.model	

 	
 	
 flask_admin.model.template	

 	
 	
 flask_admin.tools	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (BaseRule method)

 	(Container method)

 	(Field method)

 	(FieldSet method)

 	(FileUploadField method)

 	(HTML method)

 	(Header method)

 	(ImageUploadField method)

 	(Macro method)

 	(NestedRule method)

 	(Text method)

A

 	
 	action() (in module flask_admin.actions)

 	action_disallowed_list (BaseModelView attribute)

 	action_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	action_view() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	ActionsMixin (class in flask_admin.actions)

 	add_link() (Admin method)

 	add_links() (Admin method)

 	add_menu_item() (Admin method)

 	add_sub_category() (Admin method)

 	
 	add_view() (Admin method)

 	add_views() (Admin method)

 	Admin (class in flask_admin.base)

 	AdminIndexView (class in flask_admin.base)

 	after_model_change() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	after_model_delete() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	ajax_update() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	allowed_extensions (FileAdmin attribute)

 	allowed_search_types (ModelView attribute), [1]

B

 	
 	BaseForm (class in flask_admin.form)

 	BaseModelView (class in flask_admin.model)

 	
 	BaseRule (class in flask_admin.form.rules)

 	BaseView (class in flask_admin.base)

C

 	
 	can_create (BaseModelView attribute)

 	can_delete (BaseModelView attribute)

 	(FileAdmin attribute)

 	can_delete_dirs (FileAdmin attribute)

 	can_edit (BaseModelView attribute)

 	can_export (BaseModelView attribute)

 	can_mkdir (FileAdmin attribute)

 	can_rename (FileAdmin attribute)

 	can_set_page_size (BaseModelView attribute)

 	can_upload (FileAdmin attribute)

 	can_view_details (BaseModelView attribute)

 	CheckboxListField (class in flask_admin.contrib.sqla.fields)

 	column_auto_select_related (ModelView attribute)

 	column_choices (BaseModelView attribute)

 	column_default_sort (BaseModelView attribute)

 	column_descriptions (BaseModelView attribute)

 	column_details_exclude_list (BaseModelView attribute)

 	column_details_list (BaseModelView attribute)

 	column_display_actions (BaseModelView attribute)

 	column_display_all_relations (ModelView attribute)

 	column_display_pk (BaseModelView attribute)

 	column_editable_list (BaseModelView attribute)

 	column_exclude_list (BaseModelView attribute)

 	column_export_exclude_list (BaseModelView attribute)

 	column_export_list (BaseModelView attribute)

 	column_extra_row_actions (BaseModelView attribute)

 	
 	column_filters (BaseModelView attribute)

 	(ModelView attribute), [1], [2], [3]

 	column_formatters (BaseModelView attribute)

 	column_formatters_detail (BaseModelView attribute)

 	column_formatters_export (BaseModelView attribute)

 	column_labels (BaseModelView attribute)

 	column_list (BaseModelView attribute)

 	column_searchable_list (BaseModelView attribute)

 	(ModelView attribute)

 	column_select_related_list (ModelView attribute)

 	column_sortable_list (BaseModelView attribute)

 	column_type_formatters (BaseModelView attribute)

 	(ModelView attribute)

 	column_type_formatters_detail (BaseModelView attribute)

 	column_type_formatters_export (BaseModelView attribute)

 	Container (class in flask_admin.form.rules)

 	create_blueprint() (BaseView method)

 	(ModelView method), [1], [2], [3]

 	create_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	create_modal (BaseModelView attribute)

 	create_modal_template (BaseModelView attribute)

 	create_model() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	create_template (BaseModelView attribute)

 	create_view() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

D

 	
 	delete() (FileAdmin method)

 	delete_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	delete_model() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	delete_view() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	details_modal (BaseModelView attribute)

 	details_modal_template (BaseModelView attribute)

 	details_template (BaseModelView attribute)

 	details_view() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	download() (FileAdmin method)

E

 	
 	edit() (FileAdmin method)

 	edit_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	edit_modal (BaseModelView attribute)

 	edit_modal_template (BaseModelView attribute)

 	edit_template (BaseModelView attribute)

 	(FileAdmin attribute)

 	
 	edit_view() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	editable_extensions (FileAdmin attribute)

 	export_max_rows (BaseModelView attribute)

 	export_types (BaseModelView attribute)

 	expose() (in module flask_admin.base)

 	expose_plugview() (in module flask_admin.base)

F

 	
 	fast_mass_delete (ModelView attribute), [1]

 	Field (class in flask_admin.form.rules)

 	FieldSet (class in flask_admin.form.rules)

 	FileAdmin (class in flask_admin.contrib.fileadmin)

 	FileUploadField (class in flask_admin.form.upload)

 	FileUploadInput (class in flask_admin.form.upload)

 	filter_converter (ModelView attribute), [1], [2]

 	flask_admin.actions (module)

 	flask_admin.base (module)

 	flask_admin.contrib.fileadmin (module)

 	flask_admin.contrib.mongoengine (module)

 	flask_admin.contrib.mongoengine.fields (module)

 	flask_admin.contrib.peewee (module)

 	flask_admin.contrib.pymongo (module)

 	flask_admin.contrib.sqla (module)

 	flask_admin.contrib.sqla.fields (module)

 	flask_admin.form (module)

 	flask_admin.form.fields (module)

 	flask_admin.form.rules (module)

 	flask_admin.form.upload (module)

 	
 	flask_admin.helpers (module)

 	flask_admin.model (module)

 	flask_admin.model.template (module)

 	flask_admin.tools (module)

 	form (BaseModelView attribute)

 	form_ajax_refs (BaseModelView attribute)

 	form_args (BaseModelView attribute)

 	form_base_class (BaseModelView attribute)

 	(ModelView attribute), [1], [2], [3]

 	form_choices (ModelView attribute)

 	form_columns (BaseModelView attribute)

 	form_create_rules (BaseModelView attribute)

 	form_edit_rules (BaseModelView attribute)

 	form_excluded_columns (BaseModelView attribute)

 	form_extra_fields (BaseModelView attribute)

 	form_optional_types (ModelView attribute)

 	form_overrides (BaseModelView attribute)

 	form_rules (BaseModelView attribute)

 	form_subdocuments (ModelView attribute)

 	form_widget_args (BaseModelView attribute)

G

 	
 	get_action_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_actions_list() (ActionsMixin method)

 	(ModelView method), [1], [2], [3]

 	get_column_name() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_column_names() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_count_query() (ModelView method)

 	get_create_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_current_view() (in module flask_admin.helpers)

 	get_delete_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_detail_value() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_details_columns() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_edit_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_export_columns() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_export_name() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_export_value() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_filter_arg() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	get_filters() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_form_data() (in module flask_admin.helpers)

 	get_list() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_list_columns() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_list_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_list_row_actions() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_list_value() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_one() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_pk_value() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_query() (ModelView method), [1]

 	get_render_ctx() (in module flask_admin.helpers)

 	get_save_return_url() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_sortable_columns() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	get_url() (BaseView method)

 	(ModelView method), [1], [2], [3]

H

 	
 	handle_action() (ActionsMixin method)

 	(ModelView method), [1], [2], [3]

 	handle_filter() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	Header (class in flask_admin.form.rules)

 	HTML (class in flask_admin.form.rules)

I

 	
 	ignore_hidden (ModelView attribute)

 	ImageUploadField (class in flask_admin.form.upload)

 	ImageUploadInput (class in flask_admin.form.upload)

 	import_attribute() (in module flask_admin.tools)

 	import_module() (in module flask_admin.tools)

 	inaccessible_callback() (BaseView method)

 	(ModelView method), [1], [2], [3]

 	index_view() (BaseModelView method)

 	(FileAdmin method)

 	(ModelView method), [1], [2], [3]

 	init_actions() (ActionsMixin method)

 	(ModelView method), [1], [2], [3]

 	init_app() (Admin method)

 	init_search() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	inline_model_form_converter (ModelView attribute), [1]

 	
 	inline_models (ModelView attribute), [1]

 	is_accessible() (BaseView method)

 	(ModelView method), [1], [2], [3]

 	is_action_allowed() (ActionsMixin method)

 	(BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	is_editable() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	is_field_error() (in module flask_admin.helpers)

 	is_form_submitted() (in module flask_admin.helpers)

 	is_required_form_field() (in module flask_admin.helpers)

 	is_sortable() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	is_valid_filter() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	is_visible() (BaseView method)

 	(ModelView method), [1], [2], [3]

L

 	
 	list_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	list_template (BaseModelView attribute)

 	(FileAdmin attribute)

M

 	
 	Macro (class in flask_admin.form.rules)

 	macro() (in module flask_admin.model.template)

 	menu() (Admin method)

 	menu_links() (Admin method)

 	mkdir() (FileAdmin method)

 	mkdir_template (FileAdmin attribute)

 	model_form_converter (ModelView attribute), [1], [2], [3]

 	
 	ModelFormField (class in flask_admin.contrib.mongoengine.fields)

 	ModelView (class in flask_admin.contrib.mongoengine)

 	(class in flask_admin.contrib.peewee)

 	(class in flask_admin.contrib.pymongo)

 	(class in flask_admin.contrib.sqla)

 	module_not_found() (in module flask_admin.tools)

 	MongoFileField (class in flask_admin.contrib.mongoengine.fields)

 	MongoImageField (class in flask_admin.contrib.mongoengine.fields)

N

 	
 	named_filter_urls (BaseModelView attribute)

 	
 	NestedRule (class in flask_admin.form.rules)

O

 	
 	object_id_converter (ModelView attribute)

 	on_form_prefill() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	on_model_change() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	on_model_delete() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

P

 	
 	page_size (BaseModelView attribute)

Q

 	
 	QuerySelectField (class in flask_admin.contrib.sqla.fields)

 	
 	QuerySelectMultipleField (class in flask_admin.contrib.sqla.fields)

R

 	
 	rec_getattr() (in module flask_admin.tools)

 	rename() (FileAdmin method)

 	rename_template (FileAdmin attribute)

 	
 	render() (BaseView method)

 	(ModelView method), [1], [2], [3]

 	resolve_ctx() (in module flask_admin.helpers)

S

 	
 	scaffold_auto_joins() (ModelView method)

 	scaffold_filters() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	scaffold_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	scaffold_inline_form_models() (ModelView method)

 	scaffold_list_columns() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	scaffold_list_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	scaffold_pk() (ModelView method)

 	scaffold_sortable_columns() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	search_placeholder() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	Select2Field (class in flask_admin.form.fields)

 	Select2TagsField (class in flask_admin.form.fields)

 	simple_list_pager (BaseModelView attribute)

T

 	
 	Text (class in flask_admin.form.rules)

 	
 	TimeField (class in flask_admin.form.fields)

U

 	
 	update_model() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	upload() (FileAdmin method)

 	upload_template (FileAdmin attribute)

V

 	
 	validate_form() (BaseModelView method)

 	(ModelView method), [1], [2], [3]

 	
 	validate_form_on_submit() (in module flask_admin.helpers)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/flask-admin.png
Flask-Admin

_static/logo.png

_static/file.png

_static/logo_huge.png
B T,
s, s

ALlUSDR

e ey

R gty
Baiven e
Irvor e — e i

[e
i i

fivadredhenrsy

_static/minus.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Flask-Admin

 		
 Introduction To Flask-Admin

 		
 Getting Started

 		
 Authorization & Permissions

 		
 Customizing Built-in Views

 		
 Grouping Views

 		
 Adding Your Own Views

 		
 Working With the Built-in Templates

 		
 Advanced Functionality

 		
 Enabling CSRF Protection

 		
 Localization With Flask-Babelex

 		
 Managing Files & Folders

 		
 Adding A Redis Console

 		
 Replacing Individual Form Fields

 		
 Managing Geographical Models

 		
 Customising Builtin Forms Via Rendering Rules

 		
 Using Different Database Backends

 		
 Migrating From Django

 		
 Overriding the Form Scaffolding

 		
 Customizing Batch Actions

 		
 Adding A Model Backend

 		
 Extending BaseModelView

 		
 Implementing filters

 		
 API

 		
 flask_admin.base

 		
 Base View

 		
 Default view

 		
 Admin

 		
 flask_admin.helpers

 		
 flask_admin.model

 		
 flask_admin.form

 		
 flask_admin.form.rules

 		
 flask_admin.form.fields

 		
 flask_admin.form.upload

 		
 flask_admin.tools

 		
 flask_admin.actions

 		
 flask_admin.contrib.sqla

 		
 flask_admin.contrib.sqla.fields

 		
 flask_admin.contrib.mongoengine

 		
 flask_admin.contrib.mongoengine.fields

 		
 flask_admin.contrib.peewee

 		
 flask_admin.contrib.pymongo

 		
 flask_admin.contrib.fileadmin

 		
 flask_admin.model.template

 		
 Changelog

 		
 1.5.3

 		
 1.5.2

 		
 1.5.1

 		
 1.5.0

 		
 1.4.2

 		
 1.4.1

 		
 1.4.0

 		
 1.3.0

_static/up.png

_static/up-pressed.png

